Structure, Stability and Evolution of Multi-Domain Proteins
Abstract
Analyses of protein sequences from diverse genomes have revealed the ubiquitous nature of multi-domain proteins. They form up to 70% of proteomes of most eukaryotic organisms. Yet, our understanding of protein structure, folding and evolution has been dominated by extensive studies on single-domain proteins. We provide quantitative treatment and proof for prevailing intuitive ideas on the strategies employed by nature to stabilize otherwise unstable domains. We find that domains incapable of independent stability are stabilized by favourable interactions with tethered domains in the multi-domain context. Natural variations (nsSNPs) at these sites alter communication between domains and affect stability leading to disease manifestation. We emphasize this by using explicit all-atom molecular dynamics simulations to study the interface nsSNPs of human Glutathione S-transferase omega 1. We show that domain-domain interface interactions constrain inter-domain geometry (IDG) which is evolutionarily well conserved. The inter-domain linkers modulate the interactions by varying their lengths, conformations and local structure, thereby affecting the overall IDG. These findings led to the development of a method to predict interfacial residues in multi-domain proteins based on difference evolutionary information extracted from at least two diverse domain architectures (single and multi-domain). Our predictions are highly accurate (∼85%) and specific (∼95%). Using predicted residues to constrain domain–domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. Further, we developed and employed an alignment-free approach based on local amino-acid fragment matching to compare sequences of multi-domain proteins. This is especially effective in the absence of proper alignments, which is usually the case for multi-domain proteins. Using this, we were able to recreate the existing Hanks and Hunter classification scheme for protein kinases. We also showed functional relationships among Immunoglobulin sequences. The clusters obtained were functionally distinct and also showed unique domain-architectures. Our analysis provides guidelines toward rational protein and interaction design which have attractive applications in obtaining stable fragments and domain constructs essential for structural studies by crystallography and NMR. These studies enable a deeper understanding of rapport of protein domains in the multi-domain context.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Computational Studies on Structures and Functions of Single and Multi-domain Proteins
Mehrotra, Prachi (2018-05-25)Proteins are essential for the growth, survival and maintenance of the cell. Understanding the functional roles of proteins helps to decipher the working of macromolecular assemblies and cellular machinery of living ... -
Analysis Of Structural And Functional Types Of Protein-Protein Interactions
Nambudiry Rekha, * (2011-10-19) -
Functionally Interacting Proteins : Analyses And Prediction
Mohanty, Smita (2016-05-04)Functional interaction of proteins is a broad term encompassing many different types of associations that are observed amongst proteins. It includes direct non-covalent interactions where the interacting proteins physically ...