• Login
    View Item 
    •   etd@IISc
    • Division of Mechanical Sciences
    • Centre for Atmospheric and Oceanic Sciences (CAOS)
    • View Item
    •   etd@IISc
    • Division of Mechanical Sciences
    • Centre for Atmospheric and Oceanic Sciences (CAOS)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling of Solar Radiation Management : A Comparison of Simulations using Reduced Solar Constant and Stratospheric Aerosols

    View/Open
    G26296.pdf (4.432Mb)
    Date
    2017-11-22
    Author
    Sirisha, K
    Metadata
    Show full item record
    Abstract
    The climatic effects of Solar Radiation Management (SRM) geoengineering have been often modeled by simply reducing the solar constant. This is most likely valid only for space sunshades and not for atmosphere and surface based SRM methods. In this thesis, a global climate model is used to test if the climate response to SRM by stratospheric aerosols and uniform solar constant reduction are similar. Our analysis shows that when global mean warming from a doubling of CO2 is nearly cancelled by both these methods, they are similar when important surface and tropospheric climate variables are considered. However, a difference of 1K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods. Further, while the global mean surface diffuse radiation increases by about 15- 20% and direct radiation decreases by about 8% in the case of sulphate aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (~ -1.5%) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 6 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 7% decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (~ 1%) and NPP (~ 0.7%). Based on our results we conclude that the climate states produced by a reduction in solar constant and addition of aerosols into the stratosphere can be considered almost similar except for two important aspects: stratospheric temperature change and the consequent implications for the dynamics and the chemistry of the stratosphere and the partitioning of direct versus diffuse radiation reaching the surface. Further, the likely dependence of global hydrological cycle response on aerosol particle size and the latitudinal and height distribution of aerosols is discussed.
    URI
    https://etd.iisc.ac.in/handle/2005/2775
    Collections
    • Centre for Atmospheric and Oceanic Sciences (CAOS) [93]

    Related items

    Showing items related by title, author, creator and subject.

    • Modeling, Optimization And Design Of A Solar Thermal Energy Transport System For Hybrid Cooking Application 

      Prasanna, U R (2013-06-12)
      Cooking is an integral part of each and every human being as food is one of the basic necessities for living. Commonly used sources of energy for cooking are firewood, crop residue, cow dung, kerosene, electricity, liquefied ...
    • Thermodynamic Analysis And Simulation Of A Solar Thermal Power System 

      Harith, Akila (2014-05-21)
      Solar energy is a virtually inexhaustible energy resource, and thus, has great potential in helping meet many of our future energy requirements. Current technology used for solar energy conversion, however, is not cost ...
    • Studies On Fabrication And Characterisation Of TiO2 Based Dye-Sensitised Solar Cells 

      Sharmila, S (2017-07-10)
      Photovoltaic cells are a promising solution to the current energy crisis. Among the different photovoltaic cell technologies developed, dye-sensitised solar cells (DSSC) are emerging as viable low-cost alternatives to Si ...

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV