• Login
    View Item 
    •   etd@IISc
    • Division of Chemical Sciences
    • Organic Chemistry (OC)
    • View Item
    •   etd@IISc
    • Division of Chemical Sciences
    • Organic Chemistry (OC)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis Of Bioactive Marine Meroterpenoids : Frondosins And Liphagal

    View/Open
    G23511.pdf (3.895Mb)
    Date
    2013-05-20
    Author
    Shripad, Likhite Nachiket
    Metadata
    Show full item record
    Abstract
    The sea conceals a mermaid’s grotto of useful chemicals-marine natural products of therapeutic potential. Marine sponges in particular are a rich source of natural products with structural diversity and novel biological activity. In recent times, there has been a growing interest in the synthesis of marine natural products. The present thesis entitled, “Synthesis of bioactive marine meroterpenoids: frondosins and liphagal” is an endeavor along the same lines and is organized under two parts –Part A and Part B. Part A: Studies towards the total synthesis of (±) frondosins A and B Frondosins A-E are IL-8 inhibiting marine meroterpenoids, with novel bicyclo[5.4.0]undecane framework, exhibiting anti-inflammatory and anti HIV-1 activities. A relatively simple and inherently flexible ring-closing metathesis (RCM) based strategy was employed to achieve the total synthesis of frondosins A (formal) and B in only 17 linear steps (total 13 operations) and 5% overall yield. A concise route, based on RCM, to the core structure of bioactive frondosins is amenable to ready appendage diversification and enables implementation of functionalization manoeuvres on all positions in the seven-membered ring of the bicyclic framework was also developed. A Diels-Alder strategy that led to the synthesis of 8-des-methyl norfrondosin A dimethyl ether is also delineated in Part A of the thesis. Part B: A concise synthesis of (±) liphagal Liphagal is a marine meroterpenoid displaying an unprecedented “liphagane” skeleton. It is a selective inhibitor of PI3K  and significantly toxic against a small panel of human tumor cell lines (LoVo, CaCo-human colon and MDA-468-human breast). A concise and straightforward biomimetic strategy towards liphagal and its 14-des-formyl analogue that awarded liphagal dimethyl ether in only eight steps from commercially available building blocks is described in Part B of the thesis.
    URI
    https://etd.iisc.ac.in/handle/2005/1993
    Collections
    • Organic Chemistry (OC) [223]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV