• Login
    View Item 
    •   etd@IISc
    • Division of Interdisciplinary Research
    • Department of Computational and Data Sciences (CDS)
    • View Item
    •   etd@IISc
    • Division of Interdisciplinary Research
    • Department of Computational and Data Sciences (CDS)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Scalable Asynchrony-Tolerant PDE Solver for Multi-GPU Systems

    View/Open
    thesis_VJM.pdf (4.081Mb)
    Author
    Matthew, Vinod Jacob
    Metadata
    Show full item record
    Abstract
    Partial differential equations (PDEs) are used to model various natural phenomena and engineered systems. At conditions of practical interest, these equations are highly non-linear and demand massive computations. Current state-of-the-art simulations are routinely being performed on supercomputers with hundreds of thousands of processing elements. With an increase in compute intensity per node and an increase in node count as the world moves towards exa-scale machines, communication and synchronization costs pose a major bottleneck on the performance of PDE solvers. A standard approach to mitigate these bottlenecks is to enhance the overlap between communication and computation in an algorithmic implementation. Another approach also looks at relaxing communication and synchronization requirements, but at the base mathematical or numerical method level. Asynchrony-tolerant (AT) numerical schemes follow this second approach where larger stencils are used to relax these boundary value communications while maintaining the required order of accuracy. In the first part of this work, the performance of previously derived finite difference AT schemes was investigated on GPUs. GPUs are designed to deliver a high throughput, but suffer from high latency for data movement. Therefore, AT schemes can be used to hide the latency and achieve scalable performance. Two algorithms to apply such AT schemes, namely the communication avoiding which is deterministic and the synchronization avoiding which is probabilistic, have been implemented to develop a solver for turbulence problems based on the compressible Navier-Stokes equations. The solver was developed for multi-GPU multi-node systems using the MPI+CUDA model. The code was profiled and optimised with techniques such as tiling to increase coalesced memory access and manage register usage. Scaling studies were then performed and up to 50% improvement in performance has been obtained over the baseline synchronous implementation in benchmarks running up til 1024 nodes on OLCF Summit supercomputer. In the second part of the work, new asynchrony-tolerant schemes for the multi-stage Runge-Kutta methods have been developed, particularly in the context of low storage explicit Runge-Kutta (LSERK) schemes. The performance of the LSERK-AT schemes was demonstrated using a mini- app that solves the non-linear Burgers’ equations and parallelised with MPI. Benchmarks performed on SahasraT showed a peak speedup of 6x at an extreme scale of 27,000 cores.
    URI
    https://etd.iisc.ac.in/handle/2005/5785
    Collections
    • Department of Computational and Data Sciences (CDS) [100]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV