Browsing Department of Computational and Data Sciences (CDS) by Title
Now showing items 1-20 of 93
-
Abstractions and Optimizations for Data-driven Applications Across Edge and Cloud
Modern data driven applications have a novel set of requirements. Advances in deep neural networks (DNN) and computer vision (CV) algorithms have made it feasible to extract meaningful insights from large-scale deployments ... -
Accelerating Estimation of Perfusion Maps in Contrast X-ray Computed Tomography using Many-core CPUs and GPUs
X-ray Computed Tomography (CT) perfusion imaging is a non-invasive medical imaging modality that has been established as a fast and economical method for diagnosing cerebrovascular diseases such as acute ischemia, sub-arachnoid ... -
An Accelerator for Machine Learning Based Classifiers
Artificial Neural Networks (ANNs) are algorithmic techniques that simulate biological neural systems. Typical realization of ANNs are software solutions using High Level Languages (HLLs) such as C, C++, etc. Such solutions ... -
Adaptive charging techniques for Li-ion battery using Reinforcement Learning
Li-ion batteries have become a promising technology in recent years and are used everywhere from low-end devices like mobile phones to high-end ones like electric vehicles. In most applications, the discharge of a battery ... -
Advances in High Dynamic Range Imaging Using Deep Learning
Natural scenes have a wide range of brightness, from dark starry nights to bright sunlit beaches. Our human eyes can perceive such a vast range of illumination through various adaptation techniques, thus allowing us to ... -
Algorithms for Estimating Integrals in High Dimensional Spaces
Sampling, estimation and integration in high dimensional continuous spaces is required in diverse areas ranging from modeling multi-particle physical systems and optimization to inference from data. When the number of ... -
An arbitrary lagrangian eulerian volume of fluid method for floating body dynamics simulation
The floating body dynamics is treated as a Fluid-Structure Interaction (FSI) problem. A FSI problem is where the forces from the fluid move/deform the interacting structure, and the movement of the structure, in turn, ... -
Assessing protein contribution to phenotypic change using short, coarse grained molecular dynamics simulations
Understanding the functional mapping between genotype and phenotype is an important problem that has ramifications for various diseases. Various existing computational methods can infer these disease-related functional ... -
Augmenting Hyperspectral Image Unmixing Models Using Spatial Correlation, Spectral Variability, And Sparsity
Hyperspectral imaging sensors sample sunlight reflected from different targets on Earth's surface by utilising a series of contiguous narrow spectral channels. The higher spectral resolution of hyperspectral images (HSIs) ... -
Balancing Money and Time for OLAP Queries on Cloud Databases
(2017-12-16)Enterprise Database Management Systems (DBMSs) have to contend with resource-intensive and time-varying workloads, making them well-suited candidates for migration to cloud plat-forms { specifically, they can dynamically ... -
Benchmarking and Scheduling Strategies for Distributed Stream Processing
(2018-08-20)The velocity dimension of Big Data refers to the need to rapidly process data that arrives continuously as streams of messages or events. Distributed Stream Processing Systems (DSPS) refer to distributed programming and ... -
Characterization of Divergence resulting from Workload, Memory and Control-Flow behavior in GPGPU Applications
GPGPUs have emerged as high-performance computing platforms and are used for boosting the performance of general non-graphics applications from various scientifi c domains. These applications span varied areas like social ... -
A co-kurtosis tensor based featurization of chemistry for scalable combustion simulations
For turbulent reacting flow systems, identification of low-dimensional representations of the thermo-chemical state space is vitally important, primarily to significantly reduce the computational cost of device-scale ... -
Coarse-grained dynamics derived structural ensemble for prediction of metal binding sites of protein and phenotypic effects of variants
Structures of proteins play a key role in determining their functions. Knowledge of structure, especially the details of specific sites of a protein can help us understand their contribution to the overall activity. ... -
Communication Overlapping Krylov Subspace Methods for Distributed Memory Systems
Many high performance computing applications in computational fluid dynamics, electromagnetics etc. need to solve a linear system of equations $Ax=b$. For linear systems where $A$ is generally large and sparse, Krylov ... -
Constrained Stochastic Differential Equations on Smooth Manifolds.
Dynamical systems with uncertain fluctuations are usually modelled using Stochastic Differential Equations (SDEs). Due to operation and performance related conditions, these equations may also need to satisfy the constraint ... -
Data Driven Stabilization Schemes for Singularly Perturbed Differential Equations
This thesis presents a novel way of leveraging Artificial Neural Network (ANN) to aid conventional numerical techniques for solving Singularly Perturbed Differential Equation (SPDE). SPDEs are challenging to solve with ... -
Data-Driven Approach to Estimate WCET for Real-Time Systems
Estimating Worst-Case Execution Time (WCET) is paramount for developing Real-Time and Em- bedded systems. The operating system’s scheduler uses the estimated WCET to schedule each task of these systems before the assigned ... -
Data-efficient Deep Learning Algorithms for Computer Vision Applications
The performance of any deep learning model depends heavily on the quantity and quality of the available training data. The generalization of the trained deep models improves with the availability of a large number of ... -
Deep Convolutional and Generative Networks for Ocean Synoptic Feature Extraction and Super Resolution from Remotely Sensed Images
Accurate extraction of Synoptic Ocean Features and Downscaling of Ocean Features is crucial for climate studies and the operational forecasting of ocean systems. With the advancement of space and sensor technologies, the ...