Browsing Department of Computational and Data Sciences (CDS) by Title
Now showing items 1-20 of 70
-
Accelerating Estimation of Perfusion Maps in Contrast X-ray Computed Tomography using Many-core CPUs and GPUs
X-ray Computed Tomography (CT) perfusion imaging is a non-invasive medical imaging modality that has been established as a fast and economical method for diagnosing cerebrovascular diseases such as acute ischemia, sub-arachnoid ... -
An Accelerator for Machine Learning Based Classifiers
Artificial Neural Networks (ANNs) are algorithmic techniques that simulate biological neural systems. Typical realization of ANNs are software solutions using High Level Languages (HLLs) such as C, C++, etc. Such solutions ... -
Adaptive charging techniques for Li-ion battery using Reinforcement Learning
Li-ion batteries have become a promising technology in recent years and are used everywhere from low-end devices like mobile phones to high-end ones like electric vehicles. In most applications, the discharge of a battery ... -
Advances in High Dynamic Range Imaging Using Deep Learning
Natural scenes have a wide range of brightness, from dark starry nights to bright sunlit beaches. Our human eyes can perceive such a vast range of illumination through various adaptation techniques, thus allowing us to ... -
Algorithms for Estimating Integrals in High Dimensional Spaces
Sampling, estimation and integration in high dimensional continuous spaces is required in diverse areas ranging from modeling multi-particle physical systems and optimization to inference from data. When the number of ... -
Balancing Money and Time for OLAP Queries on Cloud Databases
(2017-12-16)Enterprise Database Management Systems (DBMSs) have to contend with resource-intensive and time-varying workloads, making them well-suited candidates for migration to cloud plat-forms { specifically, they can dynamically ... -
Benchmarking and Scheduling Strategies for Distributed Stream Processing
(2018-08-20)The velocity dimension of Big Data refers to the need to rapidly process data that arrives continuously as streams of messages or events. Distributed Stream Processing Systems (DSPS) refer to distributed programming and ... -
Characterization of Divergence resulting from Workload, Memory and Control-Flow behavior in GPGPU Applications
GPGPUs have emerged as high-performance computing platforms and are used for boosting the performance of general non-graphics applications from various scientifi c domains. These applications span varied areas like social ... -
Coarse-grained dynamics derived structural ensemble for prediction of metal binding sites of protein and phenotypic effects of variants
Structures of proteins play a key role in determining their functions. Knowledge of structure, especially the details of specific sites of a protein can help us understand their contribution to the overall activity. ... -
Communication Overlapping Krylov Subspace Methods for Distributed Memory Systems
Many high performance computing applications in computational fluid dynamics, electromagnetics etc. need to solve a linear system of equations $Ax=b$. For linear systems where $A$ is generally large and sparse, Krylov ... -
Deep Convolutional and Generative Networks for Ocean Synoptic Feature Extraction and Super Resolution from Remotely Sensed Images
Accurate extraction of Synoptic Ocean Features and Downscaling of Ocean Features is crucial for climate studies and the operational forecasting of ocean systems. With the advancement of space and sensor technologies, the ... -
Deep Learning for Hand-drawn Sketches: Analysis, Synthesis and Cognitive Process Models
Deep Learning-based object category understanding is an important and active area of research in Computer Vision. Most work in this area has predominantly focused on the portion of depiction spectrum consisting of ... -
Deep Learning in Computer Vision: Studies in Neuro-image Segmentation and Satellite Image Super-resolution
Single image super-resolution (SR) has been a topic of great interest in the computer vision and deep learning community and has found applications in many areas including quality enhancement of satellite images. As the ... -
Deep Visual Representations: A study on Augmentation, Visualization, and Robustness
Deep neural networks have resulted in unprecedented performances for various learning tasks. Particularly, Convolutional Neural Networks (CNNs) are shown to learn representations that can efficiently discriminate hundreds ... -
Development of advanced regularization methods to improve photoacoustic tomography
Photoacoustic tomography (PAT) is a scalable imaging modality having huge potential for imaging biological samples at very high depth to resolution ratio, thereby playing pivotal role in the areas of neuroscience, ... -
Development of Fully Data Driven Novel Methods for Improving the micro-Computed Tomography Image Quality for Digital Rock
The Digital Rock workflow is an emerging framework utilizing advances in imaging technologies and state-of-the-art image processing algorithms to construct digital models of reservoir rocks. These digital models become ... -
Development of Novel Deep Learning Methods for Fast-MRI: Anatomical Image Reconstruction to Quantitative Imaging
In medical imaging, the task of estimating interpretable anatomical images from raw scanner data - based on underlying physical principles - is known as an "inverse problem". The solution to such inverse problems can be ... -
A Divide and Conquer Framework For Graph Processing in Distributed Heterogeneous Systems
In many fields of science and engineering graph data structures are used to represent real-world information. As these graphs scale in size, it becomes very inefficient to process these graphs on a single core CPU using ... -
Efficient and Resilient Stream Processing in Distributed Shared Environment
Internet of Things (IoT) deployments comprising of sensors and actuators collect observational data and provide continuous streams of data, often called streaming data or fast data. Smart Cities use such IoT technologies ... -
Efficient betweenness Centrality Computations on Hybrid CPU-GPU Systems
(2017-10-11)Analysis of networks is quite interesting, because they can be interpreted for several purposes. Various features require different metrics to measure and interpret them. Measuring the relative importance of each vertex ...