Show simple item record

dc.contributor.advisorPrabhu, K R
dc.contributor.authorSherikar, Mahadev
dc.date.accessioned2021-08-05T04:55:15Z
dc.date.available2021-08-05T04:55:15Z
dc.date.submitted2021
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/5227
dc.description.abstractThe thesis presents a few Rh-catalyzed C-H activations for the construction of C-C bonds. The difficulty of substitution or the arylation at the maleimide's double bond under C-H activation conditions prompted a detailed study on the reaction of maleimides with 3-trifluoromethyl ketone of indole. In this study, it was realized that switching the reactions between the Heck-type reaction and hydroarylation can be achieved by using basic or acid additives. A weakly coordinating carboxylate directing group assisted C-H activation with maleimides leading to a novel and switchable decarboxylative Heck-type and [4+1] annulation products catalyzed by Rh(III)-catalyst is investigated. In these reactions, solvents play a vital role in switching the selectivity. An aprotic solvent, THF, leads to the decarboxylative Heck-type product while the protic solvent, TFE, paves [4+1] annulation product. Allyl alcohol is chemically equivalent to α,β-unsaturated ketones, and aldehydes. A weakly coordinating carbonyl-directed coupling of allyl alcohols at the C-4 position of indole derivatives under the C-H activation conditions using an Rh(III)-catalyst has been explored. The product was transformed into a tricyclic derivative, which can serve as a potential precursor for synthesizing a few alkaloid molecules such as ergot, hapalindole alkaloids, and related heterocyclic compounds. A novel strategy, catalyzed by Rh(III), for synthesizing benzazepinone and azepinone derivatives by using allyl alcohol as a coupling partner has been studied. In this reaction, Rh(III) acts as a catalyst and oxidant. Under the reaction conditions, the allyl alcohol is in-situ converted to its carbonyl compound. The alkylated product obtained in the reaction further undergoes oxidative cyclization in the presence of Lewis acidic AgSbF6. The benzolactum obtained is a valuable intermediate to synthesize berberine-like analog dopamine D3 receptor ligand, which is a potential target in the treatment of neurological disorders.en_US
dc.description.sponsorshipIndian Institute of Scienceen_US
dc.language.isoen_USen_US
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectC-H activationen_US
dc.subjectHeck-type reactionen_US
dc.subjecthydroarylationen_US
dc.subjectallyl alcoholen_US
dc.subjectbenzolactumen_US
dc.subject.classificationResearch Subject Categories::NATURAL SCIENCES::Chemistry::Organic chemistryen_US
dc.titleConstruction of C-C bonds by C-H Activation: Rh(III)-Catalyzed reactions of Arenes and Heteroarenes with Maleimides and Allylic Alcoholsen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record