• Login
    View Item 
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Mathematics (MA)
    • View Item
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Mathematics (MA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fourier coeffcients of modular forms and mass of pullbacks of Saito–Kurokawa lifts

    View/Open
    Thesis full text (893.5Kb)
    Author
    Pramath, A V
    Metadata
    Show full item record
    Abstract
    In the first part of the talk we would discuss a topic about the Fourier coefficients of modular forms. Namely, we would focus on the question of distinguishing two modular forms by certain ‘arithmetically interesting’ Fourier coefficients. These type of results are known as ‘recognition results’ and have been a useful theme in the theory of modular forms, having lots of applications. As an example we would recall the Sturm’s bound (which applies quite generally to a wide class of modular forms), which says that two modular forms are equal if (in a suitable sense) their ‘first’ few Fourier coefficients agree. As another example we would mention the classical multiplicity-one result for elliptic newforms of integral weight, which says that if two such forms f1, f2 have the same eigenvalues of the p-th Hecke operator Tp for almost all primes p, then f1 = f2. The heart of the first part of the talk would concentrate on Hermitian cusp forms of degree 2. These objects have a Fourier expansion indexed by certain matrices of size 2 over an imaginary quadratic field. We show that Hermitian cusp forms of weight k for the Hermitian modular group of degree 2 are determined by their Fourier coe cients indexed by matrices whose determinants are essentially square–free. Moreover, we give a quantitative version of the above result. is is a consequence of the corresponding results for integral weight elliptic cusp forms, which will also be discussed. is result was established by A. Saha in the context of Siegel modular forms – and played a crucial role (among others) in the automorphic transfer from GSp(4) to GL(4). We expect similar applications. We also discuss few results on the square–free Fourier coefficients of elliptic cusp forms. In the second part of the talk we introduce Saito–Kurokawa lifts: these are certain Siegel modular forms li ed from classical elliptic modular forms on the upper half plane H. If g is such an elliptic modular form of integral weight k on SL(2, Z) then we consider its Saito–Kurokawa li Fg and certain ‘restricted’ L2-norm N(Fg ) (which we refer to as the mass) associated with it. Pullback of a Siegel modular form F (( z z ¨ )) to H × H is its restriction to z = 0, which we denote by F |z=0. Conjectures of Ikeda relate such pullbacks to central values of L-functions. In fact, when a Siegel modular form arises as a Saito–Kurokawa li (say F = Fg ), results of Ichino relate the pullbacks to the central values of certain GL(3)×GL(2) L-functions. Moreover, it has been observed that comparison of the (normalized) norm of Fg with the norm of its pullback provides a measure of concentration of Fg along z = 0. We use the amplification method to improve the currently known bound for N(Fg ).
    URI
    https://etd.iisc.ac.in/handle/2005/5101
    Collections
    • Mathematics (MA) [163]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV