Show simple item record

dc.contributor.advisorDas, Soumya
dc.contributor.authorPramath, A V
dc.date.accessioned2021-04-30T05:32:08Z
dc.date.available2021-04-30T05:32:08Z
dc.date.submitted2019
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/5101
dc.description.abstractIn the first part of the talk we would discuss a topic about the Fourier coefficients of modular forms. Namely, we would focus on the question of distinguishing two modular forms by certain ‘arithmetically interesting’ Fourier coefficients. These type of results are known as ‘recognition results’ and have been a useful theme in the theory of modular forms, having lots of applications. As an example we would recall the Sturm’s bound (which applies quite generally to a wide class of modular forms), which says that two modular forms are equal if (in a suitable sense) their ‘first’ few Fourier coefficients agree. As another example we would mention the classical multiplicity-one result for elliptic newforms of integral weight, which says that if two such forms f1, f2 have the same eigenvalues of the p-th Hecke operator Tp for almost all primes p, then f1 = f2. The heart of the first part of the talk would concentrate on Hermitian cusp forms of degree 2. These objects have a Fourier expansion indexed by certain matrices of size 2 over an imaginary quadratic field. We show that Hermitian cusp forms of weight k for the Hermitian modular group of degree 2 are determined by their Fourier coe cients indexed by matrices whose determinants are essentially square–free. Moreover, we give a quantitative version of the above result. is is a consequence of the corresponding results for integral weight elliptic cusp forms, which will also be discussed. is result was established by A. Saha in the context of Siegel modular forms – and played a crucial role (among others) in the automorphic transfer from GSp(4) to GL(4). We expect similar applications. We also discuss few results on the square–free Fourier coefficients of elliptic cusp forms. In the second part of the talk we introduce Saito–Kurokawa lifts: these are certain Siegel modular forms li ed from classical elliptic modular forms on the upper half plane H. If g is such an elliptic modular form of integral weight k on SL(2, Z) then we consider its Saito–Kurokawa li Fg and certain ‘restricted’ L2-norm N(Fg ) (which we refer to as the mass) associated with it. Pullback of a Siegel modular form F (( z z ¨ )) to H × H is its restriction to z = 0, which we denote by F |z=0. Conjectures of Ikeda relate such pullbacks to central values of L-functions. In fact, when a Siegel modular form arises as a Saito–Kurokawa li (say F = Fg ), results of Ichino relate the pullbacks to the central values of certain GL(3)×GL(2) L-functions. Moreover, it has been observed that comparison of the (normalized) norm of Fg with the norm of its pullback provides a measure of concentration of Fg along z = 0. We use the amplification method to improve the currently known bound for N(Fg ).en_US
dc.language.isoen_USen_US
dc.relation.ispartofseries;G29866
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectFourier coefficientsen_US
dc.subjectmodular formsen_US
dc.subjectHermitian cusp formsen_US
dc.subjectSaito–Kurokawa liftsen_US
dc.subject.classificationResearch Subject Categories::MATHEMATICSen_US
dc.titleFourier coeffcients of modular forms and mass of pullbacks of Saito–Kurokawa liftsen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record