• Login
    View Item 
    •   etd@IISc
    • Division of Mechanical Sciences
    • Chemical Engineering (CE)
    • View Item
    •   etd@IISc
    • Division of Mechanical Sciences
    • Chemical Engineering (CE)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-scale Modelling of Lamellar Mesophases

    View/Open
    G28458.pdf (15.23Mb)
    Date
    2018-05-25
    Author
    Jaju, S J
    Metadata
    Show full item record
    Abstract
    Surfactants are amphiphilic molecules which self-assemble at the interface in oil-water-surfactant mixtures such that the hydrophobic part, called tail, stays in oil and the remaining part, called head, resides in hydrophilic en-vironment. Depending upon concentration of individual components, these mixtures form several microphases, such as bilayers, micelles, columnar and lamellar phases. A lamellar phase, at equilibrium, is made up of alternat-ing layers of water and oil separated by surfactants, or of alternate layers of water and surfactant bilayers such that the hydrophilic heads are in contact with water. This equilibrium state is rarely achieved in macroscopic samples due to thermodynamic and kinetic constraints; instead, a lamellar fluid is usually disordered with a large number of defects. These defects have significant effect on the flow behaviour of the lamellar mesophase systems. They are known to alter the flow field, resulting stresses and in turn could get distorted or annihilated by the flow. In present work, we analyse this two way coupling between lamellar structure and flow field. The structural and rheological evolution of an initially disordered lamellar phase system under a shear flow is examined using a mesoscale model based on a free energy functional for the concentration field, which is the scaled difference in the concentration between the hydrophilic and hydrophobic components. Two distinct modes of structural evolution are observed depending only on Peclet number, which ratio of inertial forces to mass diffusivity, in-dependent of system size. At low Peclet number, local domains are formed which are then rotated and stretched by shear. A balance between defect creation and annihilation is reached due to which the system never reaches the equilibrium layer configuration. In the opposite limit, partially formed layers break and reform so as to form a nearly aligned lamellar phase con-figuration with residual defects. Viscosity of lamellar phase system increases with layer moduli, differences in viscosity of individual components, fluidity of the lamellae due to shear banding and defect pinning. These factors however, do not have any effect on alignment mechanism.
    URI
    https://etd.iisc.ac.in/handle/2005/3621
    Collections
    • Chemical Engineering (CE) [144]

    Related items

    Showing items related by title, author, creator and subject.

    • Microstructural Stability of Fully Lamellar and Duplex y-TiAl Alloys During Creep 

      Babu, R Prasath (2018-03-06)
      γ-TiAl based alloys have attracted considerable research interest in the past few decades and have gained niche high temperature applications in aero-engines and automobiles. As high temperature structural materials, these ...
    • Rheology Of Particle Loaded Polymer Solutions And Lyotropic Lamellar Phases 

      Haleem, B Abdul (2011-07-22)
    • Rheology And Dynamics Of Surfactant Mesophases Using Finite Element Method 

      Patel, Bharat (2011-04-13)

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV