• Login
    View Item 
    •   etd@IISc
    • Division of Interdisciplinary Research
    • Department of Computational and Data Sciences (CDS)
    • View Item
    •   etd@IISc
    • Division of Interdisciplinary Research
    • Department of Computational and Data Sciences (CDS)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Studies on Kernel Based Edge Detection an Hyper Parameter Selection in Image Restoration and Diffuse Optical Image Reconstruction

    View/Open
    G28332.pdf (15.60Mb)
    Date
    2018-05-25
    Author
    Narayana Swamy, Yamuna
    Metadata
    Show full item record
    Abstract
    Computational imaging has been playing an important role in understanding and analysing the captured images. Both image segmentation and restoration has been in-tegral parts of computational imaging. The studies performed in this thesis has been focussed toward developing novel algorithms for image segmentation and restoration. Study related to usage of Morozov Discrepancy Principle in Di use Optical Imaging was also presented here to show that hyper parameter selection could be performed with ease. The Laplacian of Gaussian (LoG) and Canny operators use Gaussian smoothing be-fore applying the derivative operator for edge detection in real images. The LoG kernel was based on second derivative and is highly sensitive to noise when compared to the Canny edge detector. A new edge detection kernel, called as Helmholtz of Gaussian (HoG), which provides higher di suavity is developed in this thesis and it was shown that it is more robust to noise. The formulation of the developed HoG kernel is similar to LoG. It was also shown both theoretically and experimentally that LoG is a special case of HoG. This kernel when used as an edge detector exhibited superior performance compared to LoG, Canny and wavelet based edge detector for the standard test cases both in one- and two-dimensions. The linear inverse problem encountered in restoration of blurred noisy images is typically solved via Tikhonov minimization. The outcome (restored image) of such min-imitation is highly dependent on the choice of regularization parameter. In the absence of prior information about the noise levels in the blurred image, ending this regular-inaction/hyper parameter in an automated way becomes extremely challenging. The available methods like Generalized Cross Validation (GCV) may not yield optimal re-salts in all cases. A novel method that relies on minimal residual method for ending the regularization parameter automatically was proposed here and was systematically compared with the GCV method. It was shown that the proposed method performance was superior to the GCV method in providing high quality restored images in cases where the noise levels are high Di use optical tomography uses near infrared (NIR) light as the probing media to recover the distributions of tissue optical properties with an ability to provide functional information of the tissue under investigation. As NIR light propagation in the tissue is dominated by scattering, the image reconstruction problem (inverse problem) is non-linear and ill-posed, requiring usage of advanced computational methods to compensate this. An automated method for selection of regularization/hyper parameter that incorporates Morozov discrepancy principle(MDP) into the Tikhonov method was proposed and shown to be a promising method for the dynamic Di use Optical Tomography.
    URI
    https://etd.iisc.ac.in/handle/2005/3615
    Collections
    • Department of Computational and Data Sciences (CDS) [100]

    Related items

    Showing items related by title, author, creator and subject.

    • Design and Analysis of Integrated Optic Waveguide Delay Line Phase Shifters for Microwave Photonic Application 

      Honnungar, Rajini V (2018-04-23)
      Microwave Photonics(MWP) has been defined as the study of photonic devices which operate at microwave frequencies and also their applications to microwave and optical systems. One or more electrical signals at microwave ...
    • Experimental And Theoretical Studies Towards The Development Of A Direct 3-D Diffuse Optical Tomographic Imaging System 

      Biswas, Samir Kumar (2014-06-02)
      Diffuse Optical Tomography is a diagnostic imaging modality where optical parameters such as absorption coefficient, scattering coefficient and refractive index distributions are recovered to form the internal tissue ...
    • Development of Novel Reconstruction Methods Based on l1--Minimization for Near Infrared Diffuse Optical Tomography 

      Shaw, Calbvin B (2018-03-03)
      Diffuse optical tomography uses near infrared (NIR) light as the probing media to recover the distributions of tissue optical properties. It has a potential to become an adjunct imaging modality for breast and brain imaging, ...

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV