Show simple item record

dc.contributor.advisorPrasad, Kavirayani R
dc.contributor.authorNidhiry, John Eugene
dc.date.accessioned2018-01-07T11:11:30Z
dc.date.accessioned2018-07-30T15:13:05Z
dc.date.available2018-01-07T11:11:30Z
dc.date.available2018-07-30T15:13:05Z
dc.date.issued2018-01-07
dc.date.submitted2014
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/2983
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/3845/G26711-Abs.pdfen_US
dc.description.abstractThe thesis entitled “Enantiospecific total synthesis of indole alkaloids eburnamonine, aspidospermidine, quebrachamine, henrycinols A and B and synthesis of azepino[4,5-b]indolones” is divided into three chapters. In the first chapter, a unified strategy for the enantiospecific total synthesis of monoterpene indole alkaloids (+)-eburnamonine (1), (–)-aspidospermidine (2) and (–)-quebrachamine (3) is described. The chiral pool synthesis commenced with (S)-ethyl lactate 4, which was elaborated to the allylic alcohol 5. Johnson-Claisen orthoester rearrangement of the allylic alcohol 5 furnished the key chiral building block 6 possessing a quaternary stereogenic center. Pictet-Spengler cyclization of tryptamine with the corresponding aldehydes obtained by appropriate functionalization of the chiral building block 6 and ring closing metathesis were the key reactions employed en route the total synthesis of the indole alkaloids 1–3 (Scheme 1). Scheme 1. Unified strategy for the synthesis of monoterpene indole alkaloids (+)-eburnamonine (1), (–)-aspidospermidine (2) and (–)-quebrachamine (3). The second chapter of the thesis pertains to the synthesis of azepino[4,5-b]indolones 7 via Brønsted acid mediated intramolecular cyclization of unsaturated tryptamides 8. Various ,-unsaturated acids 9 derived from different -hydroxy esters 10, were converted to the corresponding unsaturated tryptamides 8 and subjected to the optimized reaction conditions. The results of the study indicated that -substituted unsaturated secondary tryptamides derived from (S)-ethyl lactate were the most effective in undergoing an intramolecular cyclization to furnish the corresponding azepino[4,5-b]indolones 7, possessing a quaternary stereogenic center in good yields. The presence of an alkenyl moiety in the quaternary center allowed the functionalization of these compounds and was subsequently employed to access the ABCD core 11 of tronocarpine and the tetracyclic cores 12 of some iboga alkaloids. The loss of chirality in the formation of the azepino[4,5-b]indolones indicated that the reaction proceeds predominantly by an SN1 pathway. During the course of the study an interesting formation of an azonino[5,4-b]indolone 13 by a competing SN1 pathway and a tetracyclic azepino[4,5-b]indolone 14 via a cascade cyclization were noticed (Scheme 2). Scheme 2. Synthesis of azepino[4,5-b]indolones 7 possessing a quaternary stereogenic center. The first total synthesis of two new indole alkaloids, henrycinols A (15) and B (16) which were isolated from the plant Melodinus henryi CRAIB is described in the third chapter of the thesis. The key reaction in the synthetic sequence is the Pictet-Spengler cyclization of L-tryptophan methyl ester 17a and the aldehyde 18 derived from D-tartaric acid which leads to the installation of all the stereogenic centers present in the natural products. Interestingly, a switch in the diastereoselectivity of the reaction was observed by varying the substituent on the amine in L-tryptophan methyl ester 17. When L-tryptophan methyl ester 17b possessing an N-allyl substitution was employed, the desired 1,3-trans tetrahydro--carboline 19b could be obtained in good yields, which was subsequently elaborated to the natural products 15 and 16 (Scheme 3). Scheme 3. Total synthesis of henrycinols A (15) and B (16).en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG26711en_US
dc.subjectIndole Alkaloids synthesisen_US
dc.subjectEburunamonineen_US
dc.subjectAspidospermidineen_US
dc.subjectQuebrachamineen_US
dc.subjectHenrycinolsen_US
dc.subjectAzepino Indolones Synthesisen_US
dc.subjectNatural Products Total Synthesisen_US
dc.subjectAlkaloid Natural Productsen_US
dc.subjectAzepino[4,5-b] indolonesen_US
dc.subjectUnsaturated Tryptamidesen_US
dc.subject.classificationOrganic Chemistryen_US
dc.titleEnantiospecific Total Synthesis of Indole Alkaloids Eburnamonine, Aspidospermidine, Quebrachamine, Henrycinols A and B and Synthesis of Azepino [4,5 -b] Indolonesen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record