• Login
    View Item 
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Physics (PHY)
    • View Item
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Physics (PHY)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Direct Numerical Simulations of Fluid Turbulence : (A) Statistical Properties of Tracer And Inertial Particles (B) Cauchy-Lagrange Studies of The Three Dimensional Euler Equation

    View/Open
    G27599.pdf (18.87Mb)
    Date
    2017-11-09
    Author
    Bhatnagar, Akshay
    Metadata
    Show full item record
    Abstract
    The studies of particles advected by tubulent flows is an active area of research across many streams of sciences and engineering, which include astrophysics, fluid mechanics, statistical physics, nonlinear dynamics, and also chemistry and biology. Advances in experimental techniques and high performance computing have made it possible to investigate the properties these particles advected by fluid flows at very high Reynolds numbers. The main focus of this thesis is to study the statistics of Lagrangian tracers and heavy inertial particles in hydrodynamic and magnetohydrodynamic (MHD) turbulent flows by using direct numerical simulations (DNSs). We also study the statistics of particles in model stochastic flows; and we compare our results for such models with those that we obtain from DNSs of hydrodynamic equations. We uncover some of aspects of the statistical properties of particle trajectories that have not been looked at so far. In the last part of the thesis we present some results that we have obtained by solving the three-dimensional Euler equation by using a new method based on the Cauchy-Lagrange formulation. This thesis is divided into 6 chapters. Chapter 1 contains an introduction to the background material that is required for this thesis; it also contains an outline of the problems we study in subsequent Chapters. Chapter 2 contains our study of “Persistence and first-passage time problems with particles in three-dimensional, homogeneous, and isotropic turbulence”. Chapter 3 is devoted to our study of “Universal Statistical Properties of Inertial-particle Trajectories in Three-dimensional, Homogeneous, Isotropic, Fluid Turbulence”. Chapter 4 deals with “Time irreversibility of Inertial-particle trajectories in Homogeneous, Isotropic, Fluid Turbulence”. Chapter 5 contains our study of the “Statistics of charged inertial particles in three-dimensional magnetohydrodynamic (MHD) turbulence”. Chapter 6 is devoted to our study of “The Cauchy-Lagrange method for the numerical integration of the threedimensional Euler equation”.
    URI
    https://etd.iisc.ac.in/handle/2005/2747
    Collections
    • Physics (PHY) [482]

    Related items

    Showing items related by title, author, creator and subject.

    • Some Studies of Statistical Properties of Turbulence in Plasmas and Fluids 

      Banerjee, Debarghya (2017-12-12)
      Turbulence is ubiquitous in the flows of fluids and plasmas. This thesis is devoted to studies of the statistical properties of turbulence in the three-dimensional (3D) Hall magnetohydrodynamic (Hall-MHD) equations, the ...
    • Numerical Studies of Problems in Turbulence : 1) Fluid Films with Polymer Additives; 2) Fluid Films with Inertial and Elliptical Particles; 3) Scaled Vorticity Moments in Three- and Two-dimensional Turbulence 

      Gupta, Anupam (2017-11-30)
      In this thesis we study a variety of problems in fluid turbulence, principally in two dimensions. A summary of the main results of our studies is given below; we indicate the Chapters in which we present these. In Chapter ...
    • Effect of Favourable Pressure Gradient on Turbulence in Boundary Layers 

      Patwardhan, Saurabh Sudhir (2018-07-16)
      This thesis explores the effects of favourable pressure gradient on the structure of turbulent boundary layers (TBL). In this context, the structure of three types of boundary layers namely a zero-pressure-gradient ...

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV