• Login
    View Item 
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Mathematics (MA)
    • View Item
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Mathematics (MA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Infinitely Divisible Metrics, Curvature Inequalities And Curvature Formulae

    View/Open
    G25296.pdf (630.1Kb)
    Date
    2014-06-30
    Author
    Keshari, Dinesh Kumar
    Metadata
    Show full item record
    Abstract
    The curvature of a contraction T in the Cowen-Douglas class is bounded above by the curvature of the backward shift operator. However, in general, an operator satisfying the curvature inequality need not be contractive. In this thesis, we characterize a slightly smaller class of contractions using a stronger form of the curvature inequality. Along the way, we find conditions on the metric of the holomorphic Hermitian vector bundle E corresponding to the operator T in the Cowen-Douglas class which ensures negative definiteness of the curvature function. We obtain a generalization for commuting tuples of operators in the Cowen-Douglas class. Secondly, we obtain an explicit formula for the curvature of the jet bundle of the Hermitian holomorphic bundle E f on a planar domain Ω. Here Ef is assumed to be a pull-back of the tautological bundle on gr(n, H ) by a nondegenerate holomorphic map f :Ω →Gr (n, H ). Clearly, finding relationships amongs the complex geometric invariants inherent in the short exact sequence 0 → Jk(Ef ) → Jk+1(Ef ) →J k+1(Ef )/ Jk(Ef ) → 0 is an important problem, whereJk(Ef ) represents the k-th order jet bundle. It is known that the Chern classes of these bundles must satisfy c(Jk+1(Ef )) = c(Jk(Ef )) c(Jk+1(Ef )/ Jk(Ef )). We obtain a refinement of this formula: trace Idnxn ( KJk(Ef )) - trace Idnxn ( KJk-1(Ef ))= KJk(Ef )/ Jk-1(Ef )(z).
    URI
    https://etd.iisc.ac.in/handle/2005/2332
    Collections
    • Mathematics (MA) [163]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV