Show simple item record

dc.contributor.advisorMisra, Gadadhar
dc.contributor.authorKeshari, Dinesh Kumar
dc.date.accessioned2014-06-30T06:22:43Z
dc.date.accessioned2018-07-31T06:09:01Z
dc.date.available2014-06-30T06:22:43Z
dc.date.available2018-07-31T06:09:01Z
dc.date.issued2014-06-30
dc.date.submitted2012
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/2332
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/2999/G25296-Abs.pdfen_US
dc.description.abstractThe curvature of a contraction T in the Cowen-Douglas class is bounded above by the curvature of the backward shift operator. However, in general, an operator satisfying the curvature inequality need not be contractive. In this thesis, we characterize a slightly smaller class of contractions using a stronger form of the curvature inequality. Along the way, we find conditions on the metric of the holomorphic Hermitian vector bundle E corresponding to the operator T in the Cowen-Douglas class which ensures negative definiteness of the curvature function. We obtain a generalization for commuting tuples of operators in the Cowen-Douglas class. Secondly, we obtain an explicit formula for the curvature of the jet bundle of the Hermitian holomorphic bundle E f on a planar domain Ω. Here Ef is assumed to be a pull-back of the tautological bundle on gr(n, H ) by a nondegenerate holomorphic map f :Ω →Gr (n, H ). Clearly, finding relationships amongs the complex geometric invariants inherent in the short exact sequence 0 → Jk(Ef ) → Jk+1(Ef ) →J k+1(Ef )/ Jk(Ef ) → 0 is an important problem, whereJk(Ef ) represents the k-th order jet bundle. It is known that the Chern classes of these bundles must satisfy c(Jk+1(Ef )) = c(Jk(Ef )) c(Jk+1(Ef )/ Jk(Ef )). We obtain a refinement of this formula: trace Idnxn ( KJk(Ef )) - trace Idnxn ( KJk-1(Ef ))= KJk(Ef )/ Jk-1(Ef )(z).en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG25296en_US
dc.subjectHilbert Spaceen_US
dc.subjectCurvature Inequalitiesen_US
dc.subjectCowen-Douglas Class Of Operatorsen_US
dc.subjectCurvature of a Contractionen_US
dc.subjectJet Bundles (Mathematics)en_US
dc.subjectVector Bundlesen_US
dc.subjectHermitian Holomorphic Vector Bundleen_US
dc.subjectInfinitely Divisible Metricsen_US
dc.subjectKernel Functionsen_US
dc.subject.classificationGeometryen_US
dc.titleInfinitely Divisible Metrics, Curvature Inequalities And Curvature Formulaeen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record