• Login
    View Item 
    •   etd@IISc
    • Division of Mechanical Sciences
    • Mechanical Engineering (ME)
    • View Item
    •   etd@IISc
    • Division of Mechanical Sciences
    • Mechanical Engineering (ME)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Force-Amplifying Compliant Mechanisms For Micromachined Resonant Accelerometers

    View/Open
    G24900.pdf (7.380Mb)
    Date
    2013-04-04
    Author
    Madhavan, Shyamsananth
    Metadata
    Show full item record
    Abstract
    This thesis work provides an insight into the design of Force-amplifying Compliant Mechanisms (FaCMs) that are integrated with micromachined resonant accelerometers to increase their sensitivity. An FaCM, by mechanically amplifying the inertial force, enhances the shift in the resonance frequency of the beams used for sensing the acceleration whose effect causes an axial force on the beams. An extensive study on different configurations of resonators namely, single beam resonator, single-ended tuning fork (SETF), and double-ended tuning fork (DETF), is carried out to gain insights about their resonant behavior. The influence of the boundary conditions on the sensor’s sensitivity emerged from the study. We found that not only the force-amplification factor but also the multi-axial stiffness of the FaCM and proof-mass influence the resonance frequency of the resonator as well as the bandwidth of the modified sensor for certain configurations but not all. Thus, four lumped parameters were identified to quantify the effectiveness of an FaCM. These parameters determine the boundary condition of the sensing beams and also the forces and the moment transmitted to them. Also presented in this work is a computationally efficient model, called the Lumped Parameter Model (LPM) for evaluation of the sensitivity. An analytical expression for the frequency-shift of the sensing resonator beams is obtained by considering the FaCM stiffness parameters as well as the lumped stiffness of the suspension of the inertial mass. Various FaCMs are evaluated and compared to understand how the four lumped parameters influence the sensor’s sensitivity. The FaCMs are synthesized using topology optimization to maximize the net amplification factor with the volume constraint. One of the FaCMs outperforms the lever by a factor of six. Microfabrication of resonant accelerometer coupled with FaCM and comb-drive actuator is carried out using a silicon-on-insulator process. Finally, the selection map technique, a compliant mechanism redesign methodology is used for enhancing the amplification of FaCMs. This technique provides scope for further design improvement in FaCMs for given sensor specifications.
    URI
    https://etd.iisc.ac.in/handle/2005/1966
    Collections
    • Mechanical Engineering (ME) [384]

    Related items

    Showing items related by title, author, creator and subject.

    • A Study of Mode Dependent Energy Dissipation in 2D MEMS Resonators 

      Doreswamy, Santhosh (2018-02-25)
      With the advent of micro and nano electromechanical systems (MEMS/NEMS), there has been rapid development in the design and fabrication of sensitive resonant sensors. Sensitivity of such devices depends on the resonant ...
    • Design And Analysis Of Integrated Optic Resonators For Biosensing Applications 

      Malathi, S (2016-09-15)
      In this thesis, we have designed and optimized strip waveguide based micro-ring and micro-ring and micro-racetrack resonators for biosensing applications. Silicon-On-Insulator (SOI) platform which offers several advantages ...
    • NMR Methods For The Study Of Partially Ordered Systems 

      Lobo, Nitin Prakash (2016-11-16)
      The work presented in this thesis has two parts. The first part deals with methodological developments in the area of solid-state NMR, relevant to the study of partially ordered systems. Liquid crystals are best examples ...

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV