Cloud Properties Over SHAR Region Derived From Weather RADAR Data
Abstract
Weather radars are increasingly used for the study of clouds, understanding the precipitation systems and also for forecasting very short range weather (one hour to a few hours). Now, Doppler Weather Radar (DWR) data are available in India and it is possible to study cloud properties at fine temporal and spatial scales. Radar is a complex system and calibration of a radar is not an easy job. But derived cloud properties strongly depend on the absolute magnitude of the reflectivity. Therefore, there is a need to check how data from two or more radars compare if they measure a common volume. Chennai and SHAR radars are within 66 km from each other, and the data collected during their calibration and intercomparison experiment in 2006 enables the comparison of their reflectivity(Z) values. Individual reflectivity are compared after plotting SHAR versus Chennai in a scatter plot. Fitting a least square linear best fit line shows that the intercept has a value around 6 dBZ and the slope of the line is 1.06. Thus, there is a trend as well, and the difference between the two radars increase with Z, and for Z around 40 dBZ (for SHAR DWR), the difference between the two is around 8.5 dBZ. Visual intercomparison also validated the results. Data from the two radars are compared with Precipitation Radar (PR) data on board TRMM satellite. TRMM radar slightly overestimates compared to Chennai radar above the range of 30 dBZ. After standardized, SHAR data is used for understanding the evolution and propagation of cloud systems. The diurnal variation in convection is strong in the study region, with increase around local evening and morning and weakening around midnight except in December. Average liquid water content in the clouds is about 0.5 gm/m3. There is some seasonal dependence but no clear dependence on cloud size. Smaller systems of May have more liquid water content compared to larger ones. For nowcasting vertically projected maximum reflectivity is taken. A threshold of 30 dBZ is set to identify the cloud systems. Both center of gravity tracking (CG) and cross-correlation (CC) methods are used to track them. Frequent merging and splitting is common in the clouds which makes storm tracking difficult. Tracking by CC is giving better result than that by the CG method in the case of large systems (i.e., clusters). For smaller systems (individual cloud systems), CC method gives better result than CG method but not as good as cluster.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Characteristics of Convective Clouds Over the Indian Monsoon Zone from Weather Radar Data
Sindhu, Kapil DevDeep convective clouds play an important role in global energy balance through vertical transport of water vapor, momentum and energy, altering radiation and also influence hydrological cycle via precipitation. These clouds ... -
Ultra High Compression For Weather Radar Reflectivity Data
Makkapati, Vishnu Vardhan (2007-10-09)Weather is a major contributing factor in aviation accidents, incidents and delays. Doppler weather radar has emerged as a potent tool to observe weather. Aircraft carry onboard radars but their range and angular resolution ... -
Vertical Structure of Convective Clouds Using the TRMM PR Data
Kumar, ShailendraVery small fractional area (0.1%) occupied by the cumulonimbus (Cb) clouds belies their importance in Earths hydrological cycle and climate. For example, Riehl and Malkus (1958) estimated that the vertical transport of ...