The Isoperimetric Problem On Trees And Bounded Tree Width Graphs
Abstract
In this thesis we study the isoperimetric problem on trees and graphs with bounded treewidth. Let G = (V,E) be a finite, simple and undirected graph. For let δ(S,G)= {(u,v) ε E : u ε S and v ε V – S }be the edge boundary of S. Given an integer i, 1 ≤ i ≤  V , let the edge isoperimetric value of G at I be defined as be(i,G)= mins v;s= i  δ(S,G). For S V, let φ(S,G) = {u ε V – S : ,such that be the vertex boundary of S. Given an integer i, 1 ≤ i ≤  V , let the vertex isoperimetric value of G at I be defined as bv(i,G)=
The edge isoperimetric peak of G is defined as be(G) =. Similarly
the vertex isoperimetric peak of G is defined as bv(G)= .The problem
of determining a lower bound for the vertex isoperimetric peak in complete kary trees of depth d,Tdkwas recently considered in[32]. In the first part of this thesis we provide lower bounds for the edge and vertex isoperimetric peaks in complete kary trees which improve those in[32]. Our results are then generalized to arbitrary (rooted)trees.
Let i be an integer where . For each i define the connected edge
isoperimetric value and the connected vertex isoperimetric value of
G at i as follows: is connected and is connected A metaFibonacci sequence is given by the reccurence a(n)= a(x1(n)+ a1′(n1))+ a(x2(n)+ a2′(n 2)), where xi: Z+ → Z+ , i =1,2, is a linear function of n and ai′(j)= a(j) or ai′(j)= a(j), for i=1,2. Sequences belonging to this class have been well studied but in general their properties remain intriguing. In the second part of the thesis we show an interesting connection between the problem of determining and certain metaFibonacci sequences.
In the third part of the thesis we study the problem of determining be and bv algorithmically for certain special classes of graphs.
Definition 0.1. A tree decomposition of a graph G = (V,E) is a pair where I is an index set, is a collection of subsets of V and T is a tree whose node set is I such that the following conditions are satisfied:
(For mathematical equations pl see the pdf file)
Collections
Related items
Showing items related by title, author, creator and subject.

Rainbow Colouring and Some Dimensional Problems in Graph Theory
Rajendraprasad, Deepak (20180405)This thesis touches three diﬀerent topics in graph theory, namely, rainbow colouring, product dimension and boxicity. Rainbow colouring An edge colouring of a graph is called a rainbow colouring, if every pair of vertices ... 
Algorithmic and Combinatorial Questions on Some Geometric Problems on Graphs
Babu, Jasine (20180508)This thesis mainly focuses on algorithmic and combinatorial questions related to some geometric problems on graphs. In the last part of this thesis, a graph coloring problem is also discussed. Boxicity and Cubicity: These ... 
Rainbow Connection Number Of Graph Power And Graph Products
Arunselvan, R (20140909)The minimum number of colors required to color the edges of a graph so that any two distinct vertices are connected by at least one path in which no two edges are colored the same is called its rainbow connection number. ...