• Login
    View Item 
    •   etd@IISc
    • Division of Mechanical Sciences
    • Mechanical Engineering (ME)
    • View Item
    •   etd@IISc
    • Division of Mechanical Sciences
    • Mechanical Engineering (ME)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    3D-Printing of Lunar Soil Simulant by Direct-Extrusion method.

    View/Open
    Thesis full text (37.73Mb)
    Author
    Desai, Dhanashri Tejpal
    Metadata
    Show full item record
    Abstract
    The extrusion-based additive manufacturing (EAM) technique is recently being widely employed for the 3D printing of complex-shaped components made of ceramic powder (containing irregular-shaped particles) when it is cast in the form of a slurry/ink. In this work, we utilize a direct extrusion method for printing structures from extra-terrestrial soil simulants using a piston-based extruder. Printing is demonstrated using a slurry composed of lunar soil simulant (LSS) variant ISAC-1 (avg. particle size ~ 90µm) mixed with biopolymer guar gum as a sustainable binding agent and DI water as a solvent. Parts were printed using a 2 mm diameter nozzle by optimizing print speed, nozzle height, inter-layer drying time, and build temperature, to ensure shape retention post-printing. The final green parts were dried in a hot air oven (50°C) for 48hrs, followed by sandpaper polishing. The strengths of the printed specimens were evaluated using compression and flexure tests and were found to be comparable to that of bio-consolidated structures. Unlike solid geometries, the well-known shell-infill type area-filling strategy generated several travels and re-tracings in the toolpath for cellular geometries. Owing to the yield stress of slurry, the travels and re-tracings resulted in discontinuous print and poor dimensional accuracy respectively. This necessitated a toolpath with increased continuity in the extrusion path. The customized toolpath is generated by defining a continuous nodal path over a lattice structure corresponding to the cellular frame. The extrusion flow rate is tuned according to the nodal path and the requirement of material deposition. Qualitatively the increased extrusion continuity in the customized toolpath resulted in continuous print with improved dimensional accuracy, whereas quantitatively a significant (~ 60%) reduction in print time is observed. These results show the potential for using the direct extrusion 3D printing method in remote extra-terrestrial environments to obtain lightweight load-bearing structures like cellular frames.
    URI
    https://etd.iisc.ac.in/handle/2005/6172
    Collections
    • Mechanical Engineering (ME) [382]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV