• Login
    View Item 
    •   etd@IISc
    • Division of Mechanical Sciences
    • Civil Engineering (CiE)
    • View Item
    •   etd@IISc
    • Division of Mechanical Sciences
    • Civil Engineering (CiE)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improved Methods for Filtration, Drainage and Structural Evaluations With and Without Geocomposites for Subsurface Drainage of Pavements

    View/Open
    Thesis full text (13.74Mb)
    Author
    Kalore, Shubham Arun
    Metadata
    Show full item record
    Abstract
    Pavements are continuously exposed to the environment leading to ingress of water from multiple sources that structurally weakens the pavement materials. The conventional solution for drainage requires granular material of a minimum thickness of 250 mm, reflecting a massive demand for suitable quality aggregates. The potential alternative to reduce the demand is incorporating a drainage geocomposite in pavements. In this thesis, improved methods for filtration, drainage, and structural evaluations with and without geocomposites are developed. The unbounded granular materials are required to be internally stable to perform self-filtration. This study investigates the practical utility of Cu and Cc in evaluating the internal stability of soils. A theoretical approach for predicting critical hydraulic gradients is developed based on the notion of differential void states of fine fraction of internally unstable soils. Granular and geotextile filters are provided in the subsurface drainage systems to limit soil erosion and allow unimpeded water seepage. In this thesis, improved design criteria are developed for the filter requirements of soil retention, hydraulic conductivity, and clogging. Further, a new approach based on the demand-capacity model is developed for the hydraulic design of granular and granular-cum-geocomposite drainage layers in pavements. Lastly, the influence of the granular filter characteristics and geocomposite on the modulus of the subgrade-subbase interface is investigated based on the Resilient Modulus tests of composite samples. Improvements to current codal provisions and specifications for subsurface drainage of pavements are suggested and illustrated.
    URI
    https://etd.iisc.ac.in/handle/2005/6150
    Collections
    • Civil Engineering (CiE) [358]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV