• Login
    View Item 
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards Robustness of Neural Legal Judgement System

    View/Open
    Thesis full text (1.197Mb)
    Author
    Raj, Rohit
    Metadata
    Show full item record
    Abstract
    Legal Judgment Prediction (LJP) implements Natural Language Processing (NLP) techniques to predict judgment results based on fact description. It can play a vital role as a legal assistant and benefit legal practitioners and regular citizens. Recently, the rapid advances in transformer- based pre-trained language models led to considerable improvement in this area. However, empirical results show that existing LJP systems are not robust to adversaries and noise. Also, they cannot handle large-length legal documents. In this work, we explore the robustness and efficiency of LJP systems even in a low data regime. In the first part, we empirically verify that existing state-of-the-art LJP systems are not robust. We further provide our novel architecture for LJP tasks which can handle extensive text lengths and adversarial examples. Our model performs better than state-of-the-art models, even in the presence of adversarial examples of the legal domain. In the second part, we investigate the approach for the LJP system in a low data regime. We further divide our second work into two scenarios depending on the number of unseen classes in the dataset which is being used for the LJP system. In the first scenario, we propose a few-shot approach with only two labels for the Judgement prediction task. In the second scenario, we propose an approach where we have an excessive number of labels for judgment prediction. For both approaches, we provide novel architectures using few-shot learning that are also robust to adversaries. We conducted extensive experiments on American, European, and Indian legal datasets in the few-shot scenario. Though trained using the few-shot approach, our models perform comparably to state-of-the-art models that are trained using large datasets in the legal domain.
    URI
    https://etd.iisc.ac.in/handle/2005/6145
    Collections
    • Computer Science and Automation (CSA) [392]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV