• Login
    View Item 
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CodeQueries: Benchmarking Query Answering over Source Code

    View/Open
    Thesis full text (1003.Kb)
    Author
    Sahu, Surya Prakash
    Metadata
    Show full item record
    Abstract
    Software developers often make queries about the security, performance effectiveness, and maintainability of their code. Through an iterative debugging process, developers analyze the code to find answers to these queries. The process can be seen as a question-answering task that requires developers to identify code spans satisfying certain properties. Many of these queries can be answered by existing code analysis tools such as CodeQL. However, using such tools requires design, implementation, and verification efforts. In this work, we propose an alternative to the code analysis tools by formulating the task of query answering over source code as a span prediction problem. In the proposed approach, a neural model is designed to predict appropriate answer spans in a code in response to a query. The required supporting-facts to justify the predicted answers are also identified by the model. Pre-trained language models for code are fine-tuned on a newly prepared challenging dataset, CodeQueries, for query answering over source code. We demonstrate that the proposed approach performs well on the query answering over source code task when only relevant code blocks are provided as input to the model. Experiments conducted on the dataset demonstrate that the proposed neural approach is robust to noisy span labeling and can even handle code with minor syntax errors. Although large-sized code and limited training examples adversely affect the model performance, we suggest methods to address these issues. Based on our study, we believe that the proposed neural approach will be an additional tool in a developer's toolbox for query answering over source code.
    URI
    https://etd.iisc.ac.in/handle/2005/6139
    Collections
    • Computer Science and Automation (CSA) [392]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV