Show simple item record

dc.contributor.advisorPratap, Rudra
dc.contributor.authorGupta, Harshvardhan
dc.date.accessioned2023-05-29T04:20:54Z
dc.date.available2023-05-29T04:20:54Z
dc.date.submitted2022
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/6109
dc.description.abstractNear-ultrasound refers to sound with frequencies just above the range of human hearing, from about 18 to 40 kHz. This band is rarely used for typical ultrasound applications and is ignored for all except the most demanding audio applications. We highlight the advantages of using this band and present a design study on the development of high-efficiency, resonant transducers for near-ultrasound. Piezoelectric Micromachined Ultrasound Transducers, or PMUTs, are MEMS resonators that are used to generate and receive ultrasound and acoustic waves. They are fabricated as multilayered diaphragms consisting of a passive structural layer coated with a piezoelectric material sandwiched between metal films. In this dissertation, we report the realization of a novel near-ultrasound PMUT system especially designed for Data-over-Sound (DoS) applications. This realization includes investigation of new transducer designs, innovation in fabrication processes, and a significant advance in acoustics and electronics integration. We use analytical and coupled finite element models of clamped circular plates with in-plane stresses to generate design maps for PMUTs. Residual tensile stresses generated during fabrication processes have the effect of stiffening the diaphragms and increasing their resonant frequencies. We experimentally estimate the magnitude of these stresses in sol-gel PZT-coated SOI wafers and fabricate transducers with dimensions optimized for near-ultrasound. The transducers are 50 times smaller and 20 times more efficient than conventional electrodynamic micro speakers in the near-ultrasound range. We then present a novel design for PMUTs with “bossed” diaphragms that allows further reduction in device footprint and power consumption while improving sensitivity and efficiency. The dimensions of the central boss structure are optimized using simulations. The fabricated devices are found to be up to 10 times smaller than conventional PMUTs for the same frequencies, and less sensitive to variations in residual stress. We have studied and optimized the effects of packaging and the acoustic environment on the performance of the transducers using finite element and boundary element acoustic simulations. The devices are packaged with 3D-printed acoustic resonators and horns designed to boost sensitivity, improve bandwidth, and widen the directivity of the transducers. The results of the simulations are experimentally verified by scanning the acoustic field of the transducers. The transducers are finally integrated into battery- and solar-powered DoS beacons and wireless sensor nodes, complete with a low-power microcontroller for modulation/demodulation, a low Q-current amplifier, a MEMS microphone, an acoustic resonator, and the near-ultrasound transducer — all in a compact package with a transmission range of up to 30 meters and a battery reserve of up to 4 weeks.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseries;ET00122
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectMEMS Piezoelectric Acoustic Transducersen_US
dc.subjectPiezoelectric Micromachined Ultrasound Transducersen_US
dc.subjectUltrasound Transducersen_US
dc.subjectData over sounden_US
dc.subjectDoSen_US
dc.subject.classificationResearch Subject Categories::TECHNOLOGY::Electrical engineering, electronics and photonics::Electronicsen_US
dc.titleDevelopment of High-Performance Piezoelectric Micromachined Transducers for Near Ultrasounden_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineEngineeringen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record