• Login
    View Item 
    •   etd@IISc
    • Division of Mechanical Sciences
    • Mechanical Engineering (ME)
    • View Item
    •   etd@IISc
    • Division of Mechanical Sciences
    • Mechanical Engineering (ME)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Classical Approach to Understanding the Impact Dynamics of Hollow Droplets

    View/Open
    Thesis full text (3.403Mb)
    Author
    Naidu, Ponnana Deekshith
    Metadata
    Show full item record
    Abstract
    Compound droplets are utilized in applications ranging from the preparation of emulsion to biological cell printing and additive manufacturing. Here, we report on the impact dynamics of a compound hollow droplet on a solid substrate. Contrary to the impact of simple droplets and compound droplets with liquids of similar densities, the compound droplet with an encapsulated air bubble demonstrates the formation of a counterjet in addition to the lamella. Here, we experimentally investigate the influence of the size of the air bubble, liquid viscosity, and height of impact on the evolution of counterjet and the spreading characteristics of the lamella. For a given hollow droplet, the volume of the counterjet is observed to depend on the volume of air and liquid in the droplet and is independent of the viscosity of the liquid and impact velocity of the droplet. We observe that the spread characteristics, counterintuitively, do not vary significantly compared to that of a simple droplet having an identical liquid volume as the hollow droplet. We propose a model to predict the maximum spread during the impact of a hollow droplet on a substrate based on the energy interaction between the spreading liquid and the liquid in the counterjet during the impact process. Furthermore, the maximum spread diameter during the impact of a HD obtained using the model developed is in excellent agreement with that observed in experiments.
    URI
    https://etd.iisc.ac.in/handle/2005/5914
    Collections
    • Mechanical Engineering (ME) [382]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV