• Login
    View Item 
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Syntactic Neural Model For Question Decomposition

    View/Open
    Thesis full text (1.718Mb)
    Author
    Gupta, Suman
    Metadata
    Show full item record
    Abstract
    Question decomposition along with single-hop Question Answering (QA) system serve as useful modules in developing multi-hop Question Answering systems, mainly because the resulting QA system is interpretable and has been demonstrated to exhibit better performance. The problem of Question Decomposition can be posed as a machine translation problem and it can be solved using any sequence-to-sequence neural architecture. Using this approach, it is difficult to capture the innate hierarchical structure of the decomposition. Inspired by database query languages a pseudo-formalism for capturing the meaning of questions, called Question Decomposition Meaning Representation (QDMR) was recently introduced. In this approach, a complex question is decomposed into simple queries which are mapped into a small set of formal operations. This method does not utilize the underlying syntax information of QDMR to generate the decomposition. In the area of programming language code generation, methods that use syntax information as a prior knowledge have been demonstrated to perform better. Moreover, the syntax-aware models are usually interpretable. Motivated by the success of syntax-aware models, we propose a new syntactic neural model for question decomposition in this thesis. In particular, we encode the underlying syntax of the QDMR structures into a grammar model as a sequence of actions. This is done using a deterministic framework which uses Abstract Syntax Trees (AST) and Parse Trees. The proposed approach can be thought of as an encoder-decoder method for QDMR structures where a sequence of possible actions is a latent representation of the QDMR structure. The advantage of using this latent representation is that it is interpretable. Experimental results on a real-world dataset demonstrate that the proposed approach outperforms the state-of-the-art approach especially in scenarios where training data is limited. Some heuristics to further improve the performance of the proposed approach are also suggested in this work.
    URI
    https://etd.iisc.ac.in/handle/2005/5529
    Collections
    • Computer Science and Automation (CSA) [393]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV