Superscalar Processor Models Using Statistical Learning
Abstract
Processor architectures are becoming increasingly complex and hence architects have to evaluate a large design space consisting of several parameters, each with a number of potential settings. In order to assist in guiding design decisions we develop simple and accurate models of the superscalar processor design space using a detailed and validated superscalar processor simulator.
Firstly, we obtain precise estimates of all significant micro-architectural parameters and their interactions by building linear regression models using simulation based experiments. We obtain good approximate models at low simulation costs using an iterative process in which Akaike’s Information Criteria is used to extract a good linear model from a small set of simulations, and limited further simulation is guided by the model using D-optimal experimental designs. The iterative process is repeated until desired error bounds are achieved. We use this procedure for model construction and show that it provides a cost effective scheme to experiment with all relevant parameters.
We also obtain accurate predictors of the processors performance response across the entire design-space, by constructing radial basis function networks from sampled simulation experiments. We construct these models, by simulating at limited design points selected by latin hypercube sampling, and then deriving the radial neural networks from the results. We show that these predictors provide accurate approximations to the simulator’s performance response, and hence provide a cheap alternative to simulation while searching for optimal processor design points.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Spatially Correlated Data Accuracy Estimation Models in Wireless Sensor Networks
Karjee, Jyotirmoy (2018-02-10)One of the major applications of wireless sensor networks is to sense accurate and reliable data from the physical environment with or without a priori knowledge of data statistics. To extract accurate data from the physical ... -
A Hydroclimatological Change Detection and Attribution Study over India using CMIP5 Models
Pattanayak, Sonali (2017-11-14)As a result of increase in global average surface temperature, abnormalities in different hydroclimatic components such as evapotranspiration, stream flow and precipitation have been experienced. So investigation has to ... -
On the Tradeoff Of Average Delay, Average Service Cost, and Average Utility for Single Server Queues with Monotone Policies
Sukumaran, Vineeth Bala (2018-04-23)In this thesis, we study the tradeoff of average delay with average service cost and average utility for both continuous time and discrete time single server queueing models without and with admission control. The continuous ...