Show simple item record

dc.contributor.advisorRao, Desirazu N
dc.contributor.authorGanguli, Debayan
dc.date.accessioned2021-04-23T07:11:52Z
dc.date.available2021-04-23T07:11:52Z
dc.date.submitted2019
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/5090
dc.description.abstractUvrD helicase belongs to type I superfamily of helicases. It participates in Nucleotide Excision Repair (NER) and DNA Mismatch Repair (MMR). It also participates in the rolling circle replication. It has been shown that UvrD can dismantle several proteins from DNA such as RecA and Tus protein. By unwinding the recombination intermediates and dismantling RecA from DNA, it acts as an anti- recombinase. UvrD has also been shown to physically interact with RNA polymerase and helps in the transcription coupled repair. In addition to these roles, UvrD helicase also contributes to the virulence of many pathogenic bacteria. In Mycobacterium tuberculosis, the inactivation of uvrD1 gene reduced its persistence in a mouse model of tuberculosis infection. Inactivation of uvrD gene in Neisseria meningitis increases the rate of phase variation. The uvrD null mutants of Haemophilus influenza exhibit a high degree of UV sensitivity and reduced level of host cell reactivation and decreased phage recombination. Biochemical studies of Helicobacter pylori UvrD (HpUvrD) shows that it can unwind DNA duplex using the energy derived from GTP hydrolysis and deletion of the C- terminal 63 residues disrupted the oligomerisation of HpUvrD. (30). Similar studies with Haemophilus influenzae UvrD reveal that the C- terminal 48 residues are important for its oligomerisation (30). In spite of these important roles in the virulence of pathogenic bacteria, a few UvrD helicase from pathogenic bacteria have been bio-chemically characterized. In this study, UvrD helicase from N. gonorrohoeae (NgoUvrD) has been bio-chemically characterized. NgoUvrD was cloned into pET14b vector between NdeI and BamHI. The protein was heterologously expressed as N- terminal His6 tag. NgoUvrD was then purified with Ni2+-NTA affinity chromatography followed by Heparin Sepharose chromatography. Size exclusion chromatography indicates that NgoUvrD behaves as dimer in solution. NgoUvrD has been found to unwind varied range of substrates like DNA with 5’ overhang, DNA with 3’ overhang, Holliday junction and blunt end duplex DNA. However, for blunt end duplex DNA the unwinding efficiency of NgoUvrD decreases with the length of DNA. Moreover, streptavidin displacement assay demonstrates that NgoUvrD translocates in 3’ to 5’ direction. Despite this how it can unwind DNA substrates with 5’ or 3’ overhangs with equal efficiency is yet to be studied.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseries;G29859
dc.rightsI grant Indian Institute of Science the right to archive and to make available my thesis or dissertation in whole or in part in all forms of media, now hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertationen_US
dc.subjectUvrD helicaseen_US
dc.subjectDNAen_US
dc.subjectHaemophilus influenzae UvrDen_US
dc.subjectNeisseria meningitisen_US
dc.subject.classificationResearch Subject Categories::NATURAL SCIENCES::Chemistry::Biochemistryen_US
dc.titleBiochemical characterization of UvrD helicase and its 1 interplay with DNA mismatch repair proteins in 2 Neisseria gonorrhoeaeen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.grantorIndian Institute of Scienceen_US
dc.degree.disciplineFaculty of Scienceen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record