Electrical And Magnetic Properties Of Polyvinylchloride - Amorphous Carbon / Iron Carbide Nanoparticle Comosites
Abstract
The UV-Visible spectra of a-C composites and nano composites have provided a very useful information about the electronic states and band structure. The UV-Visible spectra of a-C as well as nanoparticle are qualitatively similar. They do not show any absorption cutoff in wavelength (_max). In fact they are good absorbers of UV-Visible light in whole range. Composites show some absorptions which could be the combined effect of filler as we as host matrix. Since there is no _max, hence it is very unlikely to define any optical band gap.
The nanoparticle is a good absorber in midinfrared compared to a-C. That may be due to presence of complicated kind of vibrational modes of carbon cased nanoparticle.Besides Fe3C also produces some additional modes. With kind of spectrum we have it is difficult to identify the different modes unambiguously for nanoparticle. The combined effects of filler as well as host polymer are reflected in both sets of composites. A new absorption is observed in a-C as well as in nanoparticle composites at 2370 cm−1 and 3462 cm−1 respectively. This peak may arise in composites due to interaction between filler and host matrix.
The thermo gravimetric analysis is a useful characterization techniques for polymer and composites. It gives the information about the stability, phase change, degradation, chemical reaction and many more. The a-C composites as well as nano composites are stable up to 200_ C. These composites can be safely used for any practical purpose below this temperature. During the synthesis of composites the filler does not take part in any reaction. This fact is reflected in the DTG curve. The composites degrade in the way host polymer degrades.
Collections
- Physics (PHY) [462]