• Login
    View Item 
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Mathematics (MA)
    • View Item
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Mathematics (MA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Duality for Spaces of Holomorphic Functions into a Locally Convex Topological Vector Space

    View/Open
    Thesis full text (413.4Kb)
    Author
    Sehgal, Kriti
    Metadata
    Show full item record
    Abstract
    Consider an open subset O of the complex plane and a function f : O ÝÑ C. We understand the concept of holomorphicity of a complex-valued function. Suppose a function f defined on O takes values in a locally convex topological vector space (the complex plane is one particular example of a locally convex topological vector space). We want to study the notion of holomorphicity for f in this general setting. In the paper “Sur certains espaces de fonctions holomorphes I” [1], Alexandre Grothendieck deals with the concept of holomorphicity of vector-valued functions and duality. We read, understand, reproduce and at times fill in necessary details of the content of section 2 and a portion of section 4 of the paper. We understand the extension of Lebesgue integral to vector-valued functions on a measure space, named after I.M. Gelfand and B.J. Pettis as Gelfand-Pettis integral or Pettis integral (page 77 in [2]). Using the definition of Pettis integral and some results from complex analysis we introduce three notions of holomorphicity for the function f: holomorphicity of f on the open set O, weak derivability of f at a point zo P O and strong differentiability of f at a point zo P O. In Chapter 2 (section 2 in [1]) of this thesis, we study the conditions under which the first two notions of holomorphicity, i.e., f is holomorphic on the open set O and f is weakly derivable at every point of O coincide. Further the same conditions will imply the strong differentiability of f at each point of O. Also, we study Cauchy’s integral formula and Taylor’s expansion for vector valued holomorphic functions in Chapter 2. In section 4 of the paper “Sur certains espaces de fonctions holomorphes I” [1], for a subset of the Riemann sphere, Grothendieck introduces the space Pp ,Eq as the space of all locally holomorphic functions on vanishing at 8 if 8 P . He further considers two locally convex topological vector spaces E and F in separate duality and proves that the spaces Pp 1,Eq and Pp 2, Fq, where 1 and 2 are complementary subsets of the Riemann sphere, are in separate duality under some general conditions. In Chapter 3 of this thesis, which constitute the main portion of the thesis, we study the space Pp ,Eq and further present the argument of Grothendieck for separating duality with all details
    URI
    https://etd.iisc.ac.in/handle/2005/4913
    Collections
    • Mathematics (MA) [163]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV