Cross-Modal Retrieval and Hashing
Abstract
The objective of cross-modal retrieval is to retrieve relevant items from one modality (say image), given a query from another modality (say textual document). Cross-modal retrieval has various applications like matching image-sketch, audio-visual, near infrared-RGB, etc. Different feature representations of the two modalities, absence of paired correspondences, etc. makes this a very challenging problem. In this thesis, we have extensively looked at the cross-modal retrieval problem from different aspects and proposed methodologies to address them.
• In the first work, we propose a novel framework, which can work with unpaired data of the two modalities. The method has two-steps, consisting of a hash code learning stage followed by a hash function learning stage. The method can also generate unified hash representations in post-processing stage for even better performance. Finally, we investigate, formulate and address the cross-modal hashing problem in presence of missing similarity information between the data items.
• In the second work, we investigate how to make the cross-modal hashing algorithms scalable so that it can handle large amounts of training data and propose two solutions. The first approach builds on mini-batch realization of the previously formulated objective and the second is based on matrix factorization. We also investigate whether it is possible to build a hashing based approach without the need to learn a hash function as is typically done in literature. Finally, we propose a strategy so that an already trained cross-modal approach can be adapted and updated to take into account the real life scenario of increasing label space, without retraining the entire model from scratch.
• In the third work, we explore semi-supervised approaches for cross-modal retrieval. We first propose a novel framework, which can predict the labels of the unlabeled data using complementary information from the different modalities. The framework can be used as an add-on with any baseline cross-modal algorithm. The second approach estimates the labels of the unlabeled data using nearest neighbor strategy, and then train a network with skip connections to predict the true labels.
• In the fourth work, we investigate the cross-modal problem in an incremental multiclass scenario, where new data may contain previously unseen categories. We propose a novel incremental cross-modal hashing algorithm, which can adapt itself to handle incoming data of new categories. At every stage, a small amount of old category data termed exemplars is used, so as not to forget the old data while trying to learn for the new incoming data.
• Finally, we investigate the effect of label corruption on cross-modal algorithms. We first study the recently proposed training paradigms, which focuses on small loss samples to build noise-resistant image classification models and improve upon that model using techniques like self-supervision and relabeling of large loss samples. Next we extend this work for cross-modal retrieval under noisy data.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Towards Robust and Scalable Video Surveillance: Cross-modal and Domain Generalizable Person Re-identification
Jambigi, ChaitraWith rapid technological advances, one can easily find video surveillance systems deployed in public places such as malls, airports etc. as well as across private residential areas. These systems play a critical role in ... -
Generalizing Cross-domain Retrieval Algorithms
Dutta, TitirCross-domain retrieval is an important research topic due to its wide range of applications in e-commerce, forensics etc. It addresses the data retrieval problem from a search set, when the query belongs to one domain, and ... -
Spectral And Temporal Zero-Crossings-Based Signal Analysis
Shenoy, Ravi R (2017-09-20)We consider real zero-crossing analysis of the real/imaginary parts of the spectrum, namely, spectral zero-crossings (SZCs). The two major contributions are to show that: (i) SZCs provide enable temporal localization of ...