• Login
    View Item 
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Novel Neural Architecture for Multi-Hop Question Answering

    View/Open
    my_Thesis.pdf (808.1Kb)
    Author
    Bhargav, G P Shrivatsa
    Metadata
    Show full item record
    Abstract
    Natural language understanding has been one of the key drivers responsible for advancing the eld of AI. To this end, automated Question Answering (QA) has served as an effective way of measuring the language understanding capabilities of AI systems. Our focus in this thesis is on Reading Comprehension style Question Answering (RCQA) task. Reading comprehension is the ability to understand natural language text and answer questions over it. Speci cally, we focus on complex questions that require multi-hop reasoning over facts spread across multiple passages. Recently, there has been a surge in the research activities surrounding RCQA task, primarily due to the emergence of large-scale public datasets. For single-hop RCQA datasets, majority of the proposed solutions are based on massively pre-trained Transformer-style models such as BERT. Some of these solutions have exhibited human level performance. Similar solutions have been proposed for the multi-hop RCQA datasets also and they have also improved the state-of-the-art. However, we believe that the core challenges involved in the multi-hop RCQA task have not been addressed e ectively by existing solutions and hence there is an opportunity to advance the state-of-the-art. We present a novel deep neural architecture, called TAP (Translucent Answer Prediction), to identify answers and evidence (in the form of supporting facts) in an RCQA task requiring multihop reasoning. TAP comprises two loosely coupled networks { Local and Global Interaction eXtractor (LoGIX) and Answer Predictor (AP). LoGIX predicts supporting facts, whereas AP consumes these predicted supporting facts to predict the answer span. The design of LoGIX is inspired by two key design desiderata { local context and global interaction{ that we identi ed by analyzing examples of multi-hop RCQA task. The loose coupling between LoGIX and the AP reveals the set of sentences used by the AP in predicting an answer. Therefore, answer predictions of TAP can be interpreted in a translucent manner. We conduct extensive evaluations and analyses on the HotpotQA dataset to understand the characteristics of TAP. TAP achieved state-of-the-art accuracy on the distractor setting of the HotpotQA dataset.
    URI
    https://etd.iisc.ac.in/handle/2005/4421
    Collections
    • Computer Science and Automation (CSA) [392]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV