• Login
    View Item 
    •   etd@IISc
    • Division of Mechanical Sciences
    • Mechanical Engineering (ME)
    • View Item
    •   etd@IISc
    • Division of Mechanical Sciences
    • Mechanical Engineering (ME)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterization of Flow Induced Noise Received by an Array Placed at Stagnation Point of an Underwater Axisymmetric Body

    View/Open
    G28595.pdf (5.903Mb)
    Date
    2018-07-09
    Author
    Krishna Kumar, G V
    Metadata
    Show full item record
    Abstract
    Given the interest on underwater axisymmetric cylindrical bodies for the development of high-speed underwater weapons, characterization of the boundary layer flow-induced noise received by a Sound NAvigation and Ranging (SONAR) is very important to improve sonar detection ranges. The debate on generating mechanisms of the flow induced noise received at the stagnation point is still on as there is no experimental evidence conclusively suggesting whether it is a near-field or far-field phenomenon, thereby introducing an element of uncertainty in the prediction models. Further, the models developed thus far were based on low Reynolds numbers involving flows in water tunnels and buoyant vehicles. Therefore, the main focus of the thesis is to measure the flow induced noise using a sonar fitted at the most forward stagnation point of an underwater axisymmetric body as realistically as possible and predict the same theoretically for identifying a suitable flow noise model for future use by designers. In order to meet the stated goal, two exclusive experiments were conducted at sea using an underwater autonomous high-speed axisymmetric vehicle fitted with a planar hydrophone array (8X8) in its nose cone which measured the flow noise signature. Two different sets of existing models are used in characterizing the flow noise received by the array, while the first set comprises of models developed based on the Turbulent Boundary Layer induced noise and other is based on the transition zone radiated noise model. Through this study, it was found that the transition zone radiated noise model is in close agreement with the measured data.
    URI
    https://etd.iisc.ac.in/handle/2005/3799
    Collections
    • Mechanical Engineering (ME) [382]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV