• Login
    View Item 
    •   etd@IISc
    • Division of Mechanical Sciences
    • Mechanical Engineering (ME)
    • View Item
    •   etd@IISc
    • Division of Mechanical Sciences
    • Mechanical Engineering (ME)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Droplet Growth in Moist Turbulent Natural Convection in a Tube

    View/Open
    G28448.pdf (15.94Mb)
    Date
    2018-07-04
    Author
    Madival, Deepak Govind
    Metadata
    Show full item record
    Abstract
    Droplet growth processes in a cumulus cloud, beginning from its inception at sub-micron scale up to drizzle drop size of few hundred microns, in an average duration of about half hour, has been a topic of intense research. In particular role of turbulence in aiding droplet growth in clouds has been of immense interest. Motivated by this question, we have performed experiments in which turbulent natural convection coupled with phase change is set up inside a tall vertical insulated tube, by heating water located at tube bottom and circulating cold air at tube top. The resulting moist turbulent natural convection flow in the tube is expected to be axially homogeneous. Mixing of air masses of differing temperature and moisture content leads to condensation of water vapor into droplets, on aerosols available inside the tube. We there-fore have droplets in a turbulent flow, in which phase change is coupled to turbulence dynamics, just as in clouds. We obtain a linear mean-temperature pro le in the tube away from its ends. Because there is net flux of water vapor through the tube, there is a weak mean axial flow, but which is small compared to turbulent velocity fluctuations. We have experimented with two setups, the major difference between them being that in one setup, called AC setup, tube is open to atmosphere at its top and hence has higher aerosol concentration inside the tube, while the other setup, called RINAC setup, is closed to atmosphere and due to presence of aerosol filters has lower aerosol concentration inside the tube. Also in the latter setup, cold air temperature at tube top can be reduced to sub-zero levels. In both setups, turbulence attains a stationary state and is characterized by Rayleigh number based on temperature gradient inside the tube away from its ends, which is 107. A significant result from our experiments is that in RINAC setup, we obtain a broadened droplet size distribution at mid-height of tube which includes a few droplets of size 36 m, which in real clouds marks the beginning of rapid growth of droplets due to collisions among them by virtue of their interaction with turbulence. This shows that for broadening of droplet size distribution, high turbulence levels prevalent in clouds is not strictly necessary. Second part of our study comprises two pieces of theoretical work. First, we deal with the problem of a large collector drop settling amidst a population of smaller droplets whose spatial distribution is homogeneous in the direction of fall. This problem is relevant to the last stage of droplet growth in clouds, when the droplets have grown large enough that they interact weakly with turbulence and begin to settle under gravity. We propose a new method to solve this problem in which collision process is treated as a discrete stochastic process, and reproduce Telford's solution in which collision is treated as a homogeneous Poisson process. We then show how our method may be easily generalized to non-Poisson collision process. Second, we propose a new method to detect droplet clusters in images. This method is based on nearest neighbor relationship between droplets and does not employ arbitrary numerical criteria. Also this method has desirable invariance properties, in particular under the operation of uniform scaling of all distances and addition/deletion of empty space in an image, which therefore renders the proposed method robust. This method has advantage in dealing with highly clustered distributions, where cluster properties vary over the image and therefore average of properties computed over the entire image could be misleading.
    URI
    https://etd.iisc.ac.in/handle/2005/3784
    Collections
    • Mechanical Engineering (ME) [384]

    Related items

    Showing items related by title, author, creator and subject.

    • Dynamics of Droplets Under Support, Acoustic And/Or Ambient Flow Excitation 

      Deepu, P (2018-04-24)
      The first step on the way to understanding the complicated dynamics of spray is to study the behavior of isolated droplets. In many industrial and natural processes such as turbulent combustion, agricultural sprays, spray ...
    • Study of Droplet Dynamics in Heated Environment 

      Pathak, Binita (2018-04-02)
      Droplets as precursor are extensively applied in diverse fields of science and engineering. Various contributions are provided previously towards analysis of single phase and multi-phase droplets of single and multiple ...
    • Insights into Instabilities in Burning and Acoustically Levitated Nanofluid Droplets 

      Miglani, Ankur (2018-07-16)
      The complex multiscale physics of nanoparticle laden functional droplets in a reacting environment is of fundamental and applied significance for a wide variety of applications ranging from thermal sprays to pharmaceutics ...

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV