• Login
    View Item 
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Generalization of Hitting, Covering and Packing Problems on Intervals

    View/Open
    G28474.pdf (574.3Kb)
    Date
    2018-05-29
    Author
    Datta Krupa, R
    Metadata
    Show full item record
    Abstract
    Interval graphs are well studied structures. Intervals can represent resources like jobs to be sched-uled. Finding maximum independent set in interval graphs would correspond to scheduling maximum number of non-conflicting jobs on the computer. Most optimization problems on interval graphs like independent set, vertex cover, dominating set, maximum clique, etc can be solved efficiently using combinatorial algorithms in polynomial time. Hitting, Covering and Packing problems have been ex-tensively studied in the last few decades and have applications in diverse areas. While they are NP-hard for most settings, they are polynomial solvable for intervals. In this thesis, we consider the generaliza-tions of hitting, covering and packing problems for intervals. We model these problems as min-cost flow problems using non-trivial reduction and solve it using standard flow algorithms. Demand-hitting problem which is a generalization of hitting problem is defined as follows: Given N intervals, a positive integer demand for every interval, M points, a real weight for every point, select a subset of points H, such that every interval contains at least as many points in H as its demand and sum of weight of the points in H is minimized. Note that if the demand is one for all intervals, we get the standard hitting set problem. In this case, we give a dynamic programming based O(M + N) time algorithm assuming that intervals and points are sorted. A special case of the demand-hitting set is the K-hitting set problem where the demand of all the intervals is K. For the K-hitting set problem, we give a O(M2N) time flow based algorithm. For the demand-hitting problem, we make an assumption that no interval is contained in another interval. Under this assumption, we give a O(M2N) time flow based algorithm. Demand-covering problem which is a generalization of covering problem is defined as follows: Given N intervals, a real weight for every interval, M points, a positive integer demand for every point, select a subset of intervals C, such that every point is contained in at least as many intervals in C as its demand and sum of weight of the intervals in C is minimized. Note that if the demand of points are one, we get the standard covering set problem. In this case, we give a dynamic programming based O(M + N log N) time algorithm assuming that points are sorted. A special case of the demand-covering set is the K-covering set problem where the demand of all the points is K. For the K-covering set problem, we give a O(MN2) time flow based algorithm. For the demand-covering problem, we give a O(MN2) time flow based algorithm. K-pack points problem which is a generalization of packing problem is defined as follows: Given N intervals, an integer K, M points, a real weight for every point, select a subset of points Y , such that every interval contains at most K points from Y and sum of weight of the points in Y is maximized. Note that if K is one, we get the standard pack points problem. In this case, we give a dynamic pro-gramming based O(M + N) time algorithm assuming that points and intervals are sorted. For K-pack points problem, we give O(M2 log M) time flow based algorithm assuming that intervals and points are sorted.
    URI
    https://etd.iisc.ac.in/handle/2005/3628
    Collections
    • Computer Science and Automation (CSA) [531]

    Related items

    Showing items related by title, author, creator and subject.

    • Development of Mathematical Models for a Class of Component Remanufacturing Problems With Break-even Analysis 

      Sundararaman, Malolan
      The aim of the research is to propose and address a class of Component Remanufacturing (CR) problems. This class of CR problems arise for any Original Equipment Manufacturer (OEM) who produces durable products and, acquires ...
    • Analytical Results on Disorder effects on Polaritons and Barrier Crossing Problems 

      Gera, Tarun
      Disorder plays a significant role in the study of numerous fields of research in chemistry. Whether it is a more that 80 years old classic problem like Kramers’ escape rate or the current interest in polaritons, disorder ...
    • Finite Element Analysis of Optimal Control Problems Governed by Certain PDEs 

      Sau, Ramesh Chandra
      The primary goal of this thesis is to study finite element based \textit{a priori} and \textit{a posteriori} error analysis of optimal control problems of various kinds governed by linear elliptic PDEs of second order. ...

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV