Identification and Quantification of Important Voids and Pockets in Proteins
Abstract
Many methods of analyzing both the physical and chemical behavior of proteins require information about its structure and stability. Also various other parameters such as energy function, solvation, hydrophobic/hydrophilic effects, surface area and volumes too play an important part in such analysis. The contribution of cavities to these parameters are very important. Existing methods to compute and measure cavities are limited by the inherent inaccuracies in the method of acquisition of data through x-ray crystallography and uncertainities in computation of radii of atoms. We present a topological framework that enables robust computation and visualization of these structures. Given a fixed set of atoms, voids and pockets are represented as subsets of the weighted Delaunay triangulation of atom centers. A novel notion of (ε,π)-stable voids helps identify voids that are stable even after perturbing the atom radii by a small value. An efficient method is described to compute these stable voids for a given input pair of values (ε,π ). We also provide an implementation to visualize, explore (ε.π)-stable voids and also calculate various properties such as volumes, surface areas of the proteins and also of the cavities.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Structural And Evolutionary Studies On Protein-Protein Interactions
Swapna, L S (2014-05-27)The last few decades have witnessed an upsurge in the availability of large-scale data on genomes and genome-scale information. The development of methods to understand the trends and patterns from large scale data promised ... -
Algorithmic Approaches For Protein-Protein Docking And quarternary Structure Inference
Mitra, Pralay (2011-02-14)Molecular interaction among proteins drives the cellular processes through the formation of complexes that perform the requisite biochemical function. While some of the complexes are obligate (i.e., they fold together while ... -
Probing Ligand Induced Perturbations In Protien Structure Networks : Physico-Chemical Insights From MD Simulations And Graph Theory
Bhattacharyya, Moitrayee (2014-07-16)The fidelity of biological processes and reactions, inspite of the widespread diversity, is programmed by highly specific physico-chemical principles. This underlines our basic understanding of different interesting phenomena ...