dc.contributor.advisor | Prasad, V | |
dc.contributor.author | Ivaturi, Sameera | |
dc.date.accessioned | 2018-03-07T19:27:18Z | |
dc.date.accessioned | 2018-07-31T06:19:31Z | |
dc.date.available | 2018-03-07T19:27:18Z | |
dc.date.available | 2018-07-31T06:19:31Z | |
dc.date.issued | 2018-03-08 | |
dc.date.submitted | 2012 | |
dc.identifier.uri | https://etd.iisc.ac.in/handle/2005/3251 | |
dc.identifier.abstract | http://etd.iisc.ac.in/static/etd/abstracts/4112/G25699-Abs.pdf | en_US |
dc.description.abstract | Field emission is the emission of electrons from a solid under an intense electric field, of the order of 109 V/m. Emission occurs by the quantum mechanical tunneling of electrons through a potential barrier to vacuum. Field emission sources offer several attractive features such as instantaneous response to field variation, resistance to temperature fluctuation and radiation, a high degree of focusing ability in electron optics, good on/off ratio, ballistic transport, and a nonlinear current-voltage relationship.
Carbon nanotubes (CNTs) are potential candidates as field emitters since they possess high aspect ratio and are chemically inert to poisoning, and physically inert to sputtering during field emission. They can carry a very high current density and do not suffer field-induced tip sharpening like metallic tips. In addition, the CNT field emitters have the advantage of charge transport through 1D channels and electron emission at the sharp tips due to large enhancement. But the injection of electrons from the back contact remains a technical challenge which requires binding of CNT emitters to metallic substrate. Also, detachment of the CNT from the substrate tends to occur with time. The electrically conducting mixtures of CNTs and polymer can provide an alternative route to address these issues in the field emission of CNTs. The composites can be casted on any substrate in desired shape and the polymer matrix provides necessary support.
The research work reported in this thesis includes the preparation of high quality multiwall carbon nanotubes (MWCNTs), MWCNT-polystyrene (PS) composites, and experimental investigation on field emission properties of MWCNT¬PS composites in two different configurations. Electrical conductivity and percolation threshold of the MWCNT-PS composites are also investigated to ensure their high quality prior to the field emission studies. The study has been further extended to reduced graphene oxide (rGO) coated on polymer substrate. The main results obtained in present work are briefly summarized below.
This thesis contains eight chapters.
Chapter 1 provides an overview of basics of field emission, and the potential of CNT and CNT-polymer composites as field emitters.
Chapter 2 deals with the concise introduction of various structural characterization tools and experimental techniques employed in this study.
Chapter 3 describes the synthesis of MWCNTs and characterization by using electron microscopy and Raman spectroscopy.
MWCNTs are synthesized by chemical vapor deposition (CVD) of toluene [(C6H5) CH3] and ferrocene [(C5H5)2 Fe] mixture at 980 °C. Here toluene acts as carbon source material and ferrocene provides catalytic iron (Fe) particles. The MWCNT formation is based on the thermal decomposition of the precursor mixture. Scanning electron microscopy (SEM) characterization shows that the MWCNTs are closely packed and quite aligned in one direction. The average length of MWCNTs is about 200 μm and outer diameter lies in the range of 50-80 nm. The high quality of as-prepared MWCNT sample is confirmed by Raman spectroscopy. The as-grown MWCNTs are encapsulated with catalytic Fe nanoparticles, revealed by transmission electron microscopy. The Fe nanoparticles trapped within the MWCNT serve as fantastic system for studying the magnetic properties. Three types of MWCNT samples filled with Fe nanoparticles of different aspect ratio (~10, 5 and 2) are synthesized by varying the amount of ferrocene in the precursor material, and their magnetic properties are investigated. Enhanced values of coercivity (Hc) are observed for all samples, Hc being maximum (~2.6 kOe) at 10 K. The enhancement in Hc values is attributed to the strong shape anisotropy of Fe nanoparticles and significant dipolar interactions between Fe nanoparticles.
Chapter 4 deals with the field emission studies of MWCNT-PS composites in the parallel configuration.
By incorporating as-prepared MWCNTs in PS matrix in a specific ratio, composites with varying loading from 0.01-0.45 weight (wt.) fraction are prepared using solution mixing and casting. High degree of dispersion of MWCNTs in PS matrix without employing any surfactant is achieved by ultrasonication. Low percolation threshold (~0.0025 wt. fraction) in the MWCNT-PS composites ensures the good connectivity of filler in the fabricated samples. Field emission of MWCNT¬PS composites is studied in two different configurations: along the top surface of the film (parallel configuration) and along the cross section of the sample (perpendicular configuration). In this chapter field emission results of the MWCNT-PS composites in parallel configuration are presented. The effect of charge transport in limiting the field emission of MWCNT-PS composite is discussed. Field emission results of MWCNT-PS composites in parallel configuration indicate that the emission performance can be maximized at moderate wt. fraction of MWCNT (0.15). The obtained current densities are ~10 µA/cm2 in the parallel configuration.
Chapter 5 presents the study of field emission characteristics of MWCNT¬PS composites of various wt. fractions in the perpendicular configuration. Till date most studies using nanotube composites tend to have the nanotubes lying in two dimensional plane, perpendicular to the applied electric field. In the perpendicular configuration, the nanotubes are nearly aligned parallel to the direction of the applied electric field which results in high field enhancement, and electron emission at lower applied fields.
SEM micrographs in cross-sectional view reveal that MWCNTs are homogeneously distributed across the thickness and the density of protruding tubes can be scaled with wt. fraction of the composite film. Field emission from composites has been observed to vary considerably with density of MWCNTs in the polymer matrix. High emission current density of 100 mA/cm2 is achieved at a field of 2.2 V/µm for 0.15 wt. fraction. The field emission is observed to follow the Fowler– Nordheim tunneling mechanism, however, electrostatic screening plays a role in limiting the current density at higher wt. fractions.
Chapter 6 highlights the field emission response of rGO coated on a flexible PS film.
Field emission of rGO coated PS film along the cross section of the sample is studied in addition to the top film surface of the film. The effect of geometry on the improved field emission efficiency of rGO coated polymer film is demonstrated. The emission characteristics are analyzed by Fowler–Nordheim tunneling for field emission. Low turn-on field (~0.6 V/µm) and high emission current (~200 mA/cm2) in the perpendicular configuration ensure that rGO can be a potential field emitter.
Furthermore, stability and repeatability of the field emission characteristics are also presented.
Chapter 7 deals with the synthesis, characterization, and field emission of two different kinds of hybrid materials: (1) MWCNT coated with zinc oxide (ZnO) nanoparticles (2) ZnO/graphitic carbon (g-C) core-shell nanowires. The field emission from the bucky paper is improved by anchoring ZnO nanoparticles on the surface of MWCNT. A shift in turn on field from 3.5 V/µm (bucky paper) to 1.0 V/µm is observed by increasing the ZnO nanoparticle loading on the surface of MWCNT with an increase in enhancement factor from 1921 to 4894.
Field emission properties of a new type of field emitter ZnO/g-C core-shell nanowires are also presented in this chapter. ZnO/g-C core/shell nanowires are synthesized by CVD of zinc acetate at 1300 °C. Overcoming the problems of ZnO nanowire field emitters, which in general possess high turn on fields and low current densities, the core-shell nanowires exhibit excellent field emission performance with low turn on field of 2.75 V/µm and high current density of 1 mA/cm2.
Chapter 8 presents a brief summary of the important results and future perspectives of the work reported in the thesis. | en_US |
dc.language.iso | en_US | en_US |
dc.relation.ispartofseries | G25699 | en_US |
dc.subject | Electron Field Emission | en_US |
dc.subject | Quantum Mechanical Tunneling | en_US |
dc.subject | Carbon Nanotubes | en_US |
dc.subject | Nanostructured Carbon Materials | en_US |
dc.subject | Multiwall Carbon Nanotubes (MWCNTs) - Synthesis | en_US |
dc.subject | Multiwall Carbon Nanotube-Polystyrene Composites | en_US |
dc.subject | Multiwall Carbon Nanotube-Polymer Composites | en_US |
dc.subject | Multiwall Carbon Nanotubes - Field Emission | en_US |
dc.subject | Carbon Nanotube-Zinc Oxide Hybrids | en_US |
dc.subject | Graphene Oxide | en_US |
dc.subject | CNT-ZnO Hybrids | en_US |
dc.subject | MWCNT-Polymer Composites | en_US |
dc.subject | Multi-wall Carbon Nanotube-Polymer Composites | en_US |
dc.subject | Field Emission Properties | en_US |
dc.subject | MWCNT/ZnO nanoparticles hybrid | en_US |
dc.subject.classification | Physics | en_US |
dc.title | Electron Filed Emission Studies of Nanostructured Carbon Materials | en_US |
dc.type | Thesis | en_US |
dc.degree.name | PhD | en_US |
dc.degree.level | Doctoral | en_US |
dc.degree.discipline | Faculty of Science | en_US |