• Login
    View Item 
    •   etd@IISc
    • Division of Mechanical Sciences
    • Aerospace Engineering (AE)
    • View Item
    •   etd@IISc
    • Division of Mechanical Sciences
    • Aerospace Engineering (AE)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Molecular Simulation of Anisotropic Stress and Structure in polymers

    View/Open
    G26348.pdf (4.233Mb)
    Date
    2018-02-15
    Author
    Srivastava, Prashant Kumar
    Metadata
    Show full item record
    Abstract
    This dissertation presents a numerical study using molecular dynamic simulations that interrogates the polymer structure as it is strained continuously in time and correlates it with the stress developed in it. We investigate the role of external control variables such as temperature, strain-rate, chain length, and density. At temperatures higher than glass transition, stress anisotropy is reduced even though bond stretch is greater at higher temperatures. There is a significant increase in stress level with increasing density. At faster rates of loading stress anisotropy increases. Deformation is mostly due to bond stretch and bond bending rather than overall shape and size. Stress levels increase with longer chain length. Cross-linkers beyond a critical value of functionality cause increased constraint on the motion of monomers and uniaxial stress developed increases. Stacking of chains also plays a dominant role in terms of excluded volume interactions. Low density, high temperature, low values of functionality of cross-linkers, and short chain length, facilitate chain uncoiling and chain slipping in crosslinked polymers. Uniaxial stress in linear polymers, on the other hand, is only mildly in uenced by temperature. Sinusoidal strain loading clearly reveals the viscoelastic nature of polymers. Internal structural parameters of the chains such as bond length, bond angle show hysteresis during loading and unloading. However, parameters representing overall size and shape of chains do not display any hysteresis. Small size magnetic particles and their small volume fractions in polymers show no signi cant e ect of applied external magnetic eld on anisotropic stress. Stress increases with lowering temperature, increasing density, decreasing volume fraction of magnetic particles, and increasing chain length
    URI
    https://etd.iisc.ac.in/handle/2005/3113
    Collections
    • Aerospace Engineering (AE) [423]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV