Studies on Vortex Breakdown in a Closed Cylinder with a Rotating Endwall
Abstract
Swirling flows abound in nature and numerous engineering applications. Under conditions which are not completely understood, the swirling cores could undergo a sudden enlargement of their vortex core, leading to a ’vortex breakdown’. The physics of vortex breakdown and strategies to control it have been active areas of research for nearly half a century. There are many competing theories of vortex breakdown in the literature; broadly, these are surmised on similarities to flow separation, hydrodynamic instability or transition from a supercritical to a subcritical state. However, a rational criterion for vortex breakdown continues to be elusive. One of the most well known criteria in the literature is the one due to Brown and Lopez (1990) based on an inviscid vortex dynamics model which suggests that the helix angle of the velocity vector should enclose the helix angle of the vorticity vector. However it appears that this only suggests that the stream surface would diverge and not necessarily constitute a condition for breakdown. In this work, we propose a new criterion based on helicity (scalar product of velocity and vorticity vectors) for characterizing breakdown since it has fundamental topological interpretations relating to change in linkages of vortex lines. In particular, it is suggested that the breakdown location corresponds to the location where helicity becomes zero. We study the problem of vortex breakdown in a cylindrical container with a rotating top lid in order to clarify and elucidate our hypothesis. We present results from Direct Numerical Simulation of this problem for three different Reynolds numbers and evaluate the utility of our proposed helicity criterion. Our studies indicate that helicity is indeed a better choice for characterizing vortex breakdown.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Energy Separation And Lox Separation Studies In Vortex Tubes
Behera, Upendra (2014-11-24)Vortex Tube (VT) is a simple device having no moving mechanical parts, in which compressed gas at high pressure is injected through one or more tangential nozzles into a vortex chamber resulting in the separation of the ... -
A Study Of A Vortex Particle Method For Vortex Breakdown Phenomena
Shankar Kumar, B (2010-07-06)Vortex breakdown is an important phenomenon observed in swirling flows involving the development of a stagnation point on the axis of the vortex followed by a region of recirculation when the swirl increases beyond a ... -
Design of a Vortex Tube based Refrigeration System
Chatterjee, Aritra (2018-03-15)Vortex tube (VT) is a mechanical device with no moving parts. The fundamental principle of Vortex Tube is that it can split an incoming fluid flow of a constant pressure and constant temperature gas stream into two separate ...