• Login
    View Item 
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A GPU Accelerated Tensor Spectral Method for Subspace Clustering

    View/Open
    G27278.pdf (877.4Kb)
    Date
    2017-11-30
    Author
    Pai, Nithish
    Metadata
    Show full item record
    Abstract
    In this thesis we consider the problem of clustering the data lying in a union of subspaces using spectral methods. Though the data generated may have high dimensionality, in many of the applications, such as motion segmentation and illumination invariant face clustering, the data resides in a union of subspaces having small dimensions. Furthermore, for a number of classification and inference problems, it is often useful to identify these subspaces and work with data in this smaller dimensional manifold. If the observations in each cluster were to be distributed around a centric, applying spectral clustering on an a nifty matrix built using distance based similarity measures between the data points have been used successfully to solve the problem. But it has been observed that using such pair-wise distance based measure between the data points to construct a similarity matrix is not sufficient to solve the subspace clustering problem. Hence, a major challenge is to end a similarity measure that can capture the information of the subspace the data lies in. This is the motivation to develop methods that use an affinity tensor by calculating similarity between multiple data points. One can then use spectral methods on these tensors to solve the subspace clustering problem. In order to keep the algorithm computationally feasible, one can employ column sampling strategies. However, the computational costs for performing the tensor factorization increases very quickly with increase in sampling rate. Fortunately, the advances in GPU computing has made it possible to perform many linear algebra operations several order of magnitudes faster than traditional CPU and multicourse computing. In this work, we develop parallel algorithms for subspace clustering on a GPU com-putting environment. We show that this gives us a significant speedup over the implementations on the CPU, which allows us to sample a larger fraction of the tensor and thereby achieve better accuracies. We empirically analyze the performance of these algorithms on a number of synthetically generated subspaces con gyrations. We ally demonstrate the effectiveness of these algorithms on the motion segmentation, handwritten digit clustering and illumination invariant face clustering and show that the performance of these algorithms are comparable with the state of the art approaches.
    URI
    https://etd.iisc.ac.in/handle/2005/2837
    Collections
    • Computer Science and Automation (CSA) [394]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV