• Login
    View Item 
    •   etd@IISc
    • Division of Mechanical Sciences
    • Mechanical Engineering (ME)
    • View Item
    •   etd@IISc
    • Division of Mechanical Sciences
    • Mechanical Engineering (ME)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development Of A Single Cylinder SI Engine For 100% Biogas Operation

    View/Open
    G19978.pdf (3.516Mb)
    Date
    2007-05-21
    Author
    Kapadia, Bhavin Kanaiyalal
    Metadata
    Show full item record
    Abstract
    This work concerns a systematic study of IC engine operation with 100% biogas as fuel (as opposed to the dual-fuel mode) with particular emphasis on operational issues and the quest for high efficiency strategies. As a first step, a commercially available 1.2 kW genset engine is modified for biogas operation. The conventional premixing of air and biogas is compared with a new manifold injection strategy. The effect of biogas composition on engine performance is also studied. Results from the genset engine study indicate a very low overall efficiency of the system. This is mainly due to the very low compression ratio (4.5) of the engine. To gain further insight into factors that contribute to this low efficiency, thermodynamic engine simulations are conducted. Reasonable agreement with experiments is obtained after incorporating estimated combustion durations. Subsequently, the model is used as a tool to predict effect of different parameters such as compression ratio, spark timing and combustion durations on engine performance and efficiency. Simulations show that significant improvement in performance can be obtained at high compression ratios. As a step towards developing a more efficient system and based on insight obtained from simulations, a high compression ratio (9.2) engine is selected. This engine is coupled to a 3 kW alternator and operated on 100% biogas. Both strategies, i.e., premixing and manifold injection are implemented. The results show very high overall (chemical to electrical) efficiencies with a maximum value of 22% at 1.4 kW with the manifold injection strategy. The new manifold injection strategy proposed here is found to be clearly superior to the conventional premixing method. The main reasons are the higher volumetric efficiency (25% higher than that for the premixing mode of supply) and overall lean operation of the engine across the entire load range. Predictions show excellent agreement with measurements, enabling the model to be used as a tool for further study. Simulations suggest that a higher compression ratio (up to 13) and appropriate spark advance can lead to higher engine power output and efficiency.
    URI
    https://etd.iisc.ac.in/handle/2005/283
    Collections
    • Mechanical Engineering (ME) [382]

    Related items

    Showing items related by title, author, creator and subject.

    • In-Cylinder Experimental and Modeling Studies on Producer Gas Fuelled Operation of Spark Iginited Gas Engines 

      Shivapuji, Anand M (2018-08-10)
      The current work, through experimental and numerical investigations, analyses the process and cycle level deviations in engine response on fuelling multi-cylinder natural gas engines with producer gas. Producer gas is a ...
    • Development Of An Advanced Methodology For Automotive IC Engine Design Optimization Using A Multi-Physics CAE Approach 

      Sehemby, Amardeep A Singh (2016-09-14)
      The internal combustion engine is synonyms with the automobile since its invention in late 19th century. The internal combustion engine today is far more advanced and efficient compared to its early predecessors. An intense ...
    • Acoustic Source Characterization Of The Exhaust And Intake Systems Of I.C. Engines 

      Hota, Rabindra Nath (2010-07-15)
      For an engine running at a constant speed, both exhaust and intake processes are periodic in nature. This inspires the muffler designer to go for the much easier and faster frequency domain modeling. But analogous to ...

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV