A Numerical Study of Droplet Dynamics in Viscoelastic Flows
Abstract
The polymers are integral part of vast number of products used in day to day life due to their anomalous viscoelastic behaviour. The remarkable flow behaviour exhibited by the polymeric fluids including rod climbing, extrudate swell, tube-less siphon, viscoelastic jet, elastic recoil and sharkskin instability is attributed to the complex microstructures in the polymeric liquids that arise due to the interactions of long chain polymer molecules with each other and with the surrounding fluid particles. The significance of polymer in transportation, packaging, pharmaceutical, chemical, biomedical, textiles, food and polymer processing industries highlights the requirement to comprehend the complex rheology of polymeric fluids.
First, we investigate the flow features exhibited by different shear thinning vis-coelastic fluids in rectangular cavities over a wide range of depth to width ratio. We have developed a viscoelastic flow solver in order to perform numerical simulations of highly elastic flow of viscoelastic fluids. In particular, we discuss the simulations of flows of constant viscosity Boger and shear thinning viscoelastic fluids in the complex flow problems using different constitutive equations. The effects of elasticity and inertia on the flow behaviour of two shear thinning vis-coelastic fluids modeled using Giesekus and linear PTT constitutive equations in rectangular cavities is studied. The size of the primary eddies and critical aspect ratio over which the corner eddies merge to yield a second primary eddy in deep cavities is discussed. We demonstrate that the flow in the shallow and deep cavities can be characterized using Weissenberg number, defined based on the shear rate, and Deborah number, specified based on the convective time scale, respectively. The study of flow in driven cavities is important in understanding of the mixing process during synthesis of blends and composites.
Next, we study two phase polymeric flow in confined geometries. Nowadays, polymer processing industries prefer to develop newer polymer with the desired material properties mechanically by mixing and blending of different polymer components instead of chemically synthesizing fresh polymer. The microstructure of blends and emulsions following drop deformation, breakup and coalescence during mixing determines its macroscopic interfacial rheology. We developed a two phase viscoelastic flow solver using volume conserving sharp interface volume-of-fluid (VOF) method for studying the dynamics of single droplet subjected to the complex flow fields.
We investigated the effects of drop and matrix viscoelasticity on the motion and deformation of a droplet suspended in a fully developed channel flow. The flow behaviour exhibited by Newtonian-Newtonian, viscoelastic-Newtonian, Newtonian-viscoelastic and viscoelastic-viscoelastic drop-matrix systems is presented. The difference in the drop dynamics due to presence of constant viscosity Boger fluid and shear thinning viscoelastic fluid is represented using FENE-CR and linear PTT constitutive equations, respectively. The presence of shear thinning viscoelastic fluid either in the drop or the matrix phase suppresses the drop deformation due to stronger influence of matrix viscoelasticity as compared to the drop elasticity. The shear thinning viscoelastic drop-matrix system further restricts the drop deformation and it displays non-monotonic de-formation. The constant viscosity Boger fluid droplet curbs the drop deformation and exhibits flow dynamics identical to the shear thinning viscoelastic droplet, thus indicating that the nature of the drop viscoelasticity has little influence on the flow behaviour. The matrix viscoelasticity due to Boger fluid increases drop deformation and displays non-monotonic deformation. The drop deformation is further enhanced in the case of Boger fluid in viscoelastic drop-matrix system. Interestingly, the pressure drop due to the presence of viscoelastic drop in a Newtonian matrix is lower than the single phase flow of Newtonian fluid. We also discuss the effects of inertia, surface tension, drop to matrix viscosity ratio and the drop size on these drop-matrix systems.
Finally, we investigate the emulsion rheology by studying the motion of a droplet in the square lid driven cavity flow. The viscoelastic effects due to constant viscosity Boger fluid and shear thinning viscoelastic fluid are illustrated using FENECR and Giesekus rheological relations, respectively. The presence of viscoelasticity either in drop or matrix phase boosts the drop deformation with the drop viscoelasticity displaying intense deformation. The drop dynamics due to the droplet viscoelasticity is observed to be independent of the nature of vis-coelastic fluid. The shear thinning viscoelastic matrix has a stronger influence on the drop deformation and orientation compared to the Boger fluid matrix. The different blood components, cells and many materials of industrial importance are viscoelastic in nature. Thus, the present study has significant applications in medical diagnostics, drug delivery, manufacturing and processing industries, study of biological flows, pharmaceutical research and development of lab-on-chip devices.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Studies In Stability Of Newtonian And Viscoelastic Fluid Flow Past Rigid And Flexible Surfaces
Chokshi, Paresh P (2010-09-23)The surface oscillations in a deformable wall are known to induce an instability in the adjacent flow even in the absence of inertia. This instability, if understood properly, can be exploited to generate a well-mixed flow ... -
Crawling, Waving, Spinning : Activity Matters
Maitra, Ananyo (2017-12-12)This thesis has been concerned with a few problems in systems driven at the scale of particles. The problems dealt with here can be extended and elaborated upon in a variety of ways. In 2 we examine the dynamics of a fluid ... -
Turbulence in Soft Walled Micro Channels
Srinivas, S S (2017-12-07)In comparison to the flow in a rigid channel, there is a multi-fold reduction in the transition Reynolds number for the flow in a micro channel when one of the walls is made sufficiently soft, due to a dynamical instability ...