• Login
    View Item 
    •   etd@IISc
    • Division of Mechanical Sciences
    • Centre for Earth Sciences (CEaS)
    • View Item
    •   etd@IISc
    • Division of Mechanical Sciences
    • Centre for Earth Sciences (CEaS)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Seismic Site Response Evaluation Using Ambient Vibrations And Earthquakes : Applications in Active And Vulnerable Regions with Emphasis on the 2001 Bhuj (India) Earthquake

    View/Open
    G27570.pdf (15.30Mb)
    Date
    2017-09-26
    Author
    Natarajan, Thulasiraman
    Metadata
    Show full item record
    Abstract
    Local site conditions are known to influence ground motion during earthquake events and increase the severity of damage. Data from earthquakes are useful to study the response but they are available only from active regions. Ubiquitous ambient vibrations on the other hand offer a more practical approach to quantify site responses. This thesis explores the use of various methods for obtaining site responses. The primary area of study is the Kachchh rift basin, NW India, a Mesozoic rift that features significant lateral variations in surface geology and has experienced ground responses during 1819 and 2001 earthquakes. The Mw 7.6, 2001 event was followed by hundreds of aftershocks, which were recorded by temporary networks. In this study we have used earthquake signals as well as ambient vibrations to understand site response in various parts of the basin. In addition we have collected data from a few sites from the Indo-Gangetic plains and Kathmandu valley, both affected by large earthquakes, 1934 the M ~ 8 (Bihar) and 2015, Mw 7.8 (Nepal). Velocity and acceleration records from a network of eight stations in the Kachchh Rift were used to evaluate site responses using Standard Spectral Ratio (SSR) and Horizontal to Vertical spectral ratio (HVSR-E) methods. Ambient vibrations were analyzed following Nakamura’s H/V method (HVSR-AV), for data collected from 110 sites that represent different field conditions within the Kachchh Rift. Fundamental resonance frequency (f0) varied between 0.12 – 2.30 Hz, while the amplification factor (A0) was in the range of 2.0 – 9.1. We found that higher A0 and liquefaction index (Kg) values were mostly associated with higher liquefaction potential. Using a close network of stations, we studied the role of site response in damage to the Bhuj city that suffered maximum damage in 2001; our results suggest that site response was not a significant factor. Studies based on passive data were complemented by Multi-channel Analysis of Surface Waves (MASW) to map shear wave velocities of the various subsurface units up to depths of 10m (Vs10) and 30m (Vs30). Our results imply average Vs could be a good proxy to characterize site amplifications where sediment thicknesses are shallow. Power law relationship between f0 and thickness (h) suggest a strong positive correlation (r = 0.89) adding credence to HVSR-AV method, making it a cost-effective alternative to MASW to infer site conditions. Further, to understand the influence of topography on site effects, we analyzed data from hills, valleys and their edges, both from the Kachchh rift and Kathmandu valley. Sites on the edges of valleys showed multiple, fuzzy peaks in the low frequency range (< 1 Hz) and broad peaks attributable to sites prone to higher damage. Spectrograms generated through Huang-Hilbert Transforms (HHT) suggested focusing of energy in narrow frequency bands on the edges, while valleys tend to scatter energy over wide frequencies. Although our current results are based on limited observations, we recognize spectral analysis as a powerful tool to quantify site effects in regions with significant topography. It is known that coseismic liquefaction could lead to nonlinear behavior wherein the near-surface soil layer loses its shear strength, causing a reduction of its fundamental resonance frequency. We used data from selected sites of coseismic liquefaction to highlight the significance of nonlinear effects in site response. Earthquake signals and ambient vibrations from Umedpur, a region that experienced intense liquefaction during 2001 were used in this analysis. Here we followed an empirical decomposition method based on HHT and signals were decomposed as many intrinsic mode functions (IMFs) that showed characteristic peaks for events of various values of PGAs. Thus, the first IMF for events with relatively higher PGAs (0.03g) showed distinct peaks for the S wave coda part, which were not noted for those with lower PGA (0.01g). These observations in a region of coseismic liquefaction are useful in developing models for quantifying nonlinear behavior. In conclusion, site response studies using different types of data and processing techniques in regions affected by recent earthquakes brings out the scope and limitations of each of these sets of data and techniques. This study suggests that ambient vibrations provide reasonable estimates of site response and can be reliably used in regions where earthquake data are not available.
    URI
    https://etd.iisc.ac.in/handle/2005/2682
    Collections
    • Centre for Earth Sciences (CEaS) [39]

    Related items

    Showing items related by title, author, creator and subject.

    • Site Characterization and Assessment of Various Earthquake Hazards for Micro and Micro-Level Seismic Zonations of Regions in the Peninsular India 

      James, Naveen (2018-07-28)
      Past earthquakes have demonstrated that Indian sub-continent is highly vulnerable to earthquake hazards. It has been estimated that about 59 percent of the land area of the Indian subcontinent has potential risk from ...
    • Deformation characteristics of soil under sequential dynamic torsional and cyclic axial loading 

      Mog, Kunjari
      Earthquake-induced structural damages caused due to site effects, soil liquefaction failure, and associated excessive settlement are well-known worldwide. The primary controlling factor responsible for the superstructure’s ...
    • Seismic Hazard Assessment of Tripura and Mizoram States along with Microzonation of Agartala and Aizawl Cities 

      Sil, Arjun (2018-02-10)
      Tee present research focuses on seismic hazard studies for the states of Tripura and Mizoram in the North-East India with taking into account the complex sesismotectonic characteristics of the region. This area is more ...

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV