• Login
    View Item 
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Mathematics (MA)
    • View Item
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Mathematics (MA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Riesz Transforms Associated With Heisenberg Groups And Grushin Operators

    View/Open
    G25451.pdf (716.4Kb)
    Date
    2015-12-08
    Author
    Sanjay, P K
    Metadata
    Show full item record
    Abstract
    We characterise the higher order Riesz transforms on the Heisenberg group and also show that they satisfy dimension-free bounds under some assumptions on the multipliers. We also prove the boundedness of the higher order Riesz transforms associated to the Hermite operator. Using transference theorems, we deduce boundedness theorems for Riesz transforms on the reduced Heisenberg group and hence also for the Riesz transforms associated to special Hermite and Laguerre expansions. Next we study the Riesz transforms associated to the Grushin operator G = - Δ - |x|2@t2 on Rn+1. We prove that both the first order and higher order Riesz transforms are bounded on Lp(Rn+1): We also prove that norms of the first order Riesz transforms are independent of the dimension n.
    URI
    https://etd.iisc.ac.in/handle/2005/2496
    Collections
    • Mathematics (MA) [163]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV