Design And Synthesis Of Donor-Acceptor (D-A) Organic Semiconductors : Applications In Field Effect Transistors And Photovoltaics
Abstract
The present thesis is focused on rational design and synthesis of π-conjugated donor-acceptor (D-A) type oligomers and polymers. It is organized in six different chapters and a brief discussion on the content of the individual chapter is provided below.
Chapter 1 briefly describes the charge transport properties of organic semiconductors followed by recent development of different organic semiconducting materials mainly for applications in OFET and solar cells have been highlighted.
Chapter 2 explores the synthesis and characterization of two new liquid crystalline, D-A type bithiophene-benzothiazole derivatives. The liquid crystalline properties of the materials have been studied in detail with optical polarizing microscopic images and differential scanning calorimetry and found that these materials possess highly ordered smectic A liquid crystalline phase. Their charge transport properties have also been investigated by fabricating OFET devices.
Chapter 3 describes the photophysical properties and OFET performance of quinoxaline based donors-acceptor-donor (D-A-D) type molecules. Depending on the flexibility and rigidity of the conjugated backbone these materials show liquid crystalline behaviour. Investigation of their OFET performance indicated that these molecules exhibit p-type mobility up to 9.7 x 10-4 cm2V-1s-1 and on/ off ratio of 104.
Chapter 4 investigates excited state properties and OFET behavior of D-A-D type diketopyrrolopyrrole (DPP) derivatives end-capped with alkoxynaphthalene group. UV-Visible spectroscopy measurement shows strong intramolecular charge transfer (ICT) between donor and acceptor unit. Steady-state and time-resolved fluorescence measurements confirm the formation of excimer. The excited state interactions, the interchromophore separation and geometry of the molecules influence the extent of excimer formation. Finally, the OFET behavior of these DPP based materials has been studied using different dielectric layers.
Chapter 5 discusses the synthesis, characterization and properties of two new thieno[3,2-b]thiophene-DPP based donor-acceptor (D-A) type low band gap polymers (PTTDPP-BDT and PTTDPP-BZT). Investigation of OFET performance indicated that polymers exhibited ambipolar behaviour with hole mobility upto 1.0 x 10-3 cm2/Vs and electron mobility upto 8 x 10-5 cm2/Vs. Using polymer PTTDPP-BDT with electron acceptor C70PCBM, power conversion efficiency (PCE) around 3.26% in bulk heterojunction solar cell has been achieved.
Chapter 6 describes the approach to tailor the energy levels of conjugated polymers (PTDPP-IDT and PTTDPP-IDT) based on Indacenodithiophene (IDT) coupled with DPP moieties. We have studied the photovoltaic performance of these conjugated polymers by blending with PCBM and P3HT. The importance of these materials in polymer/polymer blend solar cell has been emphasized. The photovoltaic devices with polymer/polymer blend solar cell exhibit high open-circuit voltages (VOC) of ~ 0.8 V.
In summary, the work presented in this thesis describes synthesis, characterization and photophysical properties of new organic semiconductors and their importance in optoelectronic devices. This work also describes a general design principle of nonfullerene organic solar cell. The results described here show that these materials have potential application as active components in plastic electronics.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Investigations of Structure-Property Relationships in NPI and BODIPY Based Luminescent Material
Mukherjee, Sanjoy (2018-08-09)Luminescent materials find numerous applications in recent times and have enriched human lives in several different ways. From display and lighting technologies to security, sensing and biological investigations, luminescent ... -
Interface Engineering and Evaluation of Device Performance in Organic Photovoltaics
Rao, Arun Dhumal (2018-05-11)In recent years, organic photovoltaics (OPVs) have attracted considerable attention as a potential source of renewable energy over traditional materials due to their light weight, low production cost, mechanically stability ... -
Theoretical Investigation of OPTO-Electronic Processes in Organic Conjugated Systems Within Interacting Models : Exact Diagonalization and DMRG Studies
Prodhan, Suryoday (2018-05-21)The present thesis deals with a theoretical study of electronic structures in -conjugated molecular materials with focus on their application in organic elec-tronics. We also discuss a modified and efficient symmetrized ...