• Login
    View Item 
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    •   etd@IISc
    • Division of Electrical, Electronics, and Computer Science (EECS)
    • Computer Science and Automation (CSA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Visual Analysis Of Interactions In Multifield Scientific Data

    View/Open
    G25239.pdf (3.474Mb)
    Date
    2014-11-14
    Author
    Suthambhara, N
    Metadata
    Show full item record
    Abstract
    Data from present day scientific simulations and observations of physical processes often consist of multiple scalar fields. It is important to study the interactions between the fields to understand the underlying phenomena. A visual representation of these interactions would assist the scientist by providing quick insights into complex relationships that exist between the fields. We describe new techniques for visual analysis of multifield scalar data where the relationships can be quantified by the gradients of the individual scalar fields and their mutual alignment. Empirically, gradients along with their mutual alignment have been shown to be a good indicator of the relationships between the different scalar variables. The Jacobi set, defined as the set of points where the gradients are linearly dependent, describes the relationship between the gradient fields. The Jacobi set of two piecewise linear functions may contain several components indicative of noisy or a feature-rich dataset. For two dimensional domains, we pose the problem of simplification as the extraction of level sets and offset contours and describe a robust technique to simplify and create a multi-resolution representation of the Jacobi set. Existing isosurface-based techniques for scalar data exploration like Reeb graphs, contour spectra, isosurface statistics, etc., study a scalar field in isolation. We argue that the identification of interesting isovalues in a multifield data set should necessarily be based on the interaction between the different fields. We introduce a variation density function that profiles the relationship between multiple scalar fields over isosurfaces of a given scalar field. This profile serves as a valuable tool for multifield data exploration because it provides the user with cues to identify interesting isovalues of scalar fields. Finally, we introduce a new multifield comparison measure to capture relationships between scalar variables. We also show that our measure is insensitive to noise in the scalar fields and to noise in their gradients. Further, it can be computed robustly and efficiently. The comparison measure can be used to identify regions of interest in the domain where interactions between the scalar fields are significant. Subsequent visualization of the data focuses on these regions of interest leading to effective visual analysis. We demonstrate the effectiveness of our techniques by applying them to real world data from different domains like combustion studies, climate sciences and computer graphics.
    URI
    https://etd.iisc.ac.in/handle/2005/2407
    Collections
    • Computer Science and Automation (CSA) [392]

    Related items

    Showing items related by title, author, creator and subject.

    • RLtools : A Toolset For Visual Language Application Development Based on Relational Grammars 

      Suresh, B G (2012-11-20)
    • Visibility Visualization And Haptic Path Exploration 

      Manohar, B S (2009-08-19)
      We propose a real-time system to visualize multi-viewpoint visibility information for terrains, supporting flight path optimization for view coverage or vehicle exposure to ground. A volume rendered display and a haptic ...
    • An Experimental Study Of Instabilities In Unsteady Separation Bubbles 

      Das, Shyama Prasad (Indian Institute of Science, 2007-06-11)
      The present thesis is an experimental study of some aspects of unsteady two dimensional boundary layers subject to adverse pressure gradient. An adverse pressure gradient usually leads to boundary layer separation or an ...

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV