• Login
    View Item 
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Mathematics (MA)
    • View Item
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Mathematics (MA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Study Of The Metric Induced By The Robin Function

    View/Open
    G23806.pdf (774.4Kb)
    Date
    2013-09-13
    Author
    Borah, Diganta
    Metadata
    Show full item record
    Abstract
    Let D be a smoothly bounded domain in Cn , n> 1. For each point p _ D, we have the Green function G(z, p) associated to the standard sum-of-squares Laplacian Δ with pole at p and the Robin constant __ Λ(p) = lim G(z, p) −|z − p−2n+2 z→p | at p. The function p _→ Λ(p) is called the Robin function for D. Levenberg and Yamaguchi had proved that if D is a C∞-smoothly bounded pseudoconvex domain, then the function log(−Λ) is a real analytic, strictly plurisubharmonic exhaustion function for D and thus induces a metric ds2 = n∂2 log(−Λ)(z) dzα ⊗ dzβ z ∂zα∂zβ α,β=1 on D, called the Λ-metric. For an arbitrary C∞-smoothly bounded domain, they computed the boundary asymptotics of Λ and its derivatives up to order 3, in terms of a defining function for the domain. As a consequence it was shown that the Λ-metric is complete on a C∞-smoothly bounded strongly pseudoconvex domain or a C∞-smoothly bounded convex domain. In this thesis, we study the boundary behaviour of the function Λ and its derivatives of all orders near a C2-smooth boundary point of an arbitrary domain. We compute the boundary asymptotics of the Λ-metric on a C∞-smoothly bounded pseudoconvex domain and as a consequence obtain that on a C∞-smoothly bounded strongly pseudoconvex domain, the Λ-metric is comparable to the Kobayashi metric (and hence to the Carath´eodory and the Bergman metrics). Using the boundary asymptotics of Λ and its derivatives, we calculate the holomorphic sectional curvature of the Λ-metric on a C∞-smoothly bounded strongly pseudoconvex domain at points on the inner normals and along the normal directions. The unit ball in Cn is also characterised among all C∞-smoothly bounded strongly convex domains on which the Λ-metric has constant negative holomorphic sectional curvature. Finally we study the stability of the Λ-metric under a C2 perturbation of a C∞-smoothly bounded pseudoconvex domain. (For equation pl refer the abstract pdf file)
    URI
    https://etd.iisc.ac.in/handle/2005/2240
    Collections
    • Mathematics (MA) [163]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV