• Login
    View Item 
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Mathematics (MA)
    • View Item
    •   etd@IISc
    • Division of Physical and Mathematical Sciences
    • Mathematics (MA)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dilations, Functoinal Model And A Complete Unitary Invariant Of A r-contraction.

    View/Open
    G25106.pdf (573.8Kb)
    Date
    2013-08-02
    Author
    Pal, Sourav
    Metadata
    Show full item record
    Abstract
    A pair of commuting bounded operators (S, P) for which the set r = {(z 1 +z 2,z 1z 2) : |z 1| ≤1, |z 2| ≤1} C2 is a spectral set, is called a r-contraction in the literature. For a contraction P and a bounded commutant S of P, we seek a solution of the operator equation S –S*P = (I –P*P)½ X(I –P*P)½ where X is a bounded operator on Ran(I – P*P)½ with numerical radius of X being not greater than 1. We show the existence and uniqueness of solution to the operator equation above when (S,P) is a r-contraction. We call the unique solution, the fundamental operator of the r-contraction (S,P). As the title indicates, there are three parts of this thesis and the main role in all three parts is played by the fundamental operator. The existence of the fundamental operator allows us to explicitly construct a r-isometric dilation of a r-contraction (S,P), whereas its uniqueness guarantees the uniqueness of the minimal r-isometric dilation. The fundamental operator helps us to produce a genuine functional model for pure r-contractions. Also it leads us to a complete unitary invariant for pure r-contractions. We decipher the structures of r-isometries and r-unitaries by characterizing them in several different ways. We establish the fact that for every pure r-contraction (S,P), there is a bounded operator C with numerical radius being not greater than 1 such that S = C + C* P. When (S,P) is a r-isometry, S has the same form where P is an isometry commuting with C and C*. Also when (S,P) is a r-unitary, S has the same form too with P and C being commuting unitaries. Examples of r-contractions on reproducing kernel Hilbert spaces and their dilations are discussed.
    URI
    https://etd.iisc.ac.in/handle/2005/2182
    Collections
    • Mathematics (MA) [163]

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV