Show simple item record

dc.contributor.advisorUmarji, A M
dc.contributor.authorGeetika, *
dc.date.accessioned2013-05-01T06:50:43Z
dc.date.accessioned2018-07-30T15:08:56Z
dc.date.available2013-05-01T06:50:43Z
dc.date.available2018-07-30T15:08:56Z
dc.date.issued2013-05-01
dc.date.submitted2009
dc.identifier.urihttps://etd.iisc.ac.in/handle/2005/1982
dc.identifier.abstracthttp://etd.iisc.ac.in/static/etd/abstracts/2567/G23650-Abs.pdfen_US
dc.description.abstractThe first chapter introduces the basic principles governing the phenomenon like ferroelectricity, piezoelectricity and pyroelectricity, which influences the material properties for its device applications. An effort is made to examine the present status of material issues, measurement techniques and applications pertaining to the lead based PZT type systems. This chapter also highlights the objectives and the scope of work. The second chapter deals with the various basic experimental techniques and principles adopted for the synthesis and characterizations of materials which include phase and quantitative analysis by X-ray diffraction, density measurements, microstructures by scanning electron microscopy, electrical properties such as dielectric permittivity, dielectric loss, and piezoelectricity by impedance analyzer and piezometer etc. The materials were synthesized via two step solid state reaction by adopting a low temperature calcinations route. Further, hot processing was employed for densification and better control of microstructure of the ceramics. In the third chapter PZT1-x –PZNx (x=0, 0.1, 0.2 & 0.3) compositions prepared by the single step low temperature calcination method have been described. It is seen that the pyrochlore free perovskite phase could be obtained up to x=0.2 compositions. The effect of additives like Li and Mn on the structure, sinterability, microstructure, density and dielectric properties has been investigated. The improvement in densification and ferroelectric properties were observed for Li addition favor tetragonal phase while Mn addition compositions were inclined to pseudocubic phase. Further, the addition of Mn led to the significant decrease in Tc than the parent compositions compared to Li added compositions. In the fourth chapter, the X-ray diffraction data on pbzrx Ti1-x O3 (PZT) for x=0.48 to 0.52 are presented. High resolution x-ray studies for composition x=0.5 show the MPB which consists of monoclinic Zr rich studies and tetragonal Ti rich phase at room temperature. The refined structural parameters for MPB compositions have been obtained using least square Rietveld refinement program, FULLPROF 2006. The evolutions of lattice parameters of the system were also studied with respect to the temperature. The phase transformation in the system has been analyzed by x-ray diffraction pattern and dielectric measurements. The monoclinic phase transforms to tetragonal phase at 270oC after which the tetragonal phase transforms to paraelectric cubic phase at 370DoC. Dielectric properties show signature of the phase transformation. Hence, it is concluded to pole the MPB samples below 270o C to gain the advantage of increased ease of polarization reorientation for monoclinic phase. The fifth chapter deals with the systematic structural investigation on PZT1-y-PNZy (PZT-PNZ) and PZT1-y-PMNy (PZT-PMN) systems. In this chapter, an effort has been made to determine quantitatively the MPB phase contents and variation in Zr/Ti ratio of PZT-PZN and PZT-PMN systems. High resolution XRD data has been used for quantitative phase analysis using FULLPROF 2006. The correlation between the width of MPB and grain size has also been discussed for these systems. It is found that the addition of PMN and PZN to PZT system shifts the MPB towards pbZrO3 (PZ). The MPB can be regained by tuning the Zr/Ti ratio in the system. Further, there exists an inverse relation between the grain size and coexistence region in the system. It is seen that the MPB range is from x=0.48 to 0.58 and x=0.44 to 0.58 for 10% and 20% PZN concentration respectively. Similar trend has been obtained for the PZT-PMN system. The MPB ranges from x=0.46 to 0.53 and x=0.42 to 0.50 for 10% and 20% PMN respectively. The broadening of coexistence width is attributed to the lower grain size of our samples synthesized by adopting low temperature calcinations route. The sixth chapter deals with the hot pressing technique employed (adopting low temperature calcinations) for the synthesis of various PZT-PMN compositions with an intention of obtaining highly dense piezoceramics with fine, homogeneous and uniform microstructure. It also describes the dielectric, pyroelecrtic and pi ezoelectric properties were enhanced by hot processing technique. Li and Mn addition further improved the properties of the system. The seventh chapter investigates various nominal compositions of PZT-(Li, Nb) compositions based on certain assumptions. The attempt was made to introduce Li at A site and B site of ABO3 perovskite lattice. The ball milled, calcined powders were densified at<1000oC using hot pressing technique to prevent Li and Pb loss. High density ceramics have been studied for structural, dielectric, piezoelectric and pyroelectric properties. Through the clear cut evidence for the identification of Li site in the PZT system could not be established but the system which were synthesized under the assumption that Li substitutes A-site of the perovskite, favored the tetragonal phase and led to the enhancement in the dielectric, pyroelectric and piezoelectric properties. Further, their transition temperature was higher compared to the compositions where Li was tried to substitute B-site, which makes them promising candidates for transducer applications. The key finding in this thesis has been carried out by the candidate as part of the ph. D. programme. She hopes that this would constitute a worthwhile contribution towards the understanding of the behavior of lead based perovskites and in tailoring the properties of these ceramics towards device applications by the introduction of suitable additives in the system.en_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesG23650en_US
dc.subjectPerovskite Lead Zirconate Ceramicsen_US
dc.subjectCeramic Composite Structureen_US
dc.subjectLead Zirconate Titanate Ceramicsen_US
dc.subjectPZT Ceramicsen_US
dc.subjectPZT-PZN Ceramicsen_US
dc.subjectPZT-PMN Ceramicsen_US
dc.subjectMorphotropic Phase Boundaryen_US
dc.subjectPZT Systemen_US
dc.subject.classificationChemical Engineeringen_US
dc.titleSynthesis, Structure And Properties Of MPB Composition In PZT- Type Ceramicsen_US
dc.typeThesisen_US
dc.degree.namePhDen_US
dc.degree.levelDoctoralen_US
dc.degree.disciplineFaculty of Engineeringen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record