Processing And Characterization Of B4C Particle Reinforced Al-5%Mg Alloy Matrix Composites
Abstract
Metal matrix composites (MMCs) are emerging as advanced engineering materials for application in aerospace, defence, automotive and consumer industries (sports goods etc.). In MMCs, a metallic base material is reinforced with ceramic fiber, whisker or particulate in order to achieve a combination of properties not attainable by either constituent individually. Aluminium or its alloy is favoured as metallic matrix material because of its low density, easy fabricability and good engineering properties. In general, the benefits of aluminium metal matrix composites (AMCs) over unreinforced aluminium alloy are increased specific stiffness, improved wear resistance and decreased coefficient of thermal expansion. The conventional reinforcement materials for AMCs are SiC and AI2O3.
In the present work, boron carbide (B4C) particles of average size 40μm were chosen as reinforcement because of its higher hardness (very close to diamond) than the conventional reinforcement like SiC, AI2O3 etc. and of its density (2.52 g cm"3) very close to Al alloy matrix. In addition, due to high neutron capture cross-section of 10B isotope, composites containing B4C particle reinforcement have the potential for use in nuclear reactors as neutron shielding and control rod material. Al-5%Mg alloy was chosen as matrix alloy to utilize the beneficial role of Mg in improving wettability between B4C particles and the alloy melt. (Al-5%Mg)-B4C composites containing 10 and 20 vol% B4C particles were fabricated. For the purpose of inter-comparison, unreinforced Al-5%Mg alloy was also prepared and characterized. The Stir Cast technique, commonly utilized for preparation of Al-SiC, was adapted in this investigation.The Composites thus prepared was subsequently hot extruded with the objective of homogenization and healing minor casting defects. Finally the unreinforced alloy and its composites were characterized in terms of their microstructure, mechanical and thermo-physical properties, sliding wear behaviour and neutron absorption characteristics.
The microstructures of the composites were evaluated by both optical microscope and scanning electron microscope (SEM). The micrographs revealed a relatively uniform distribution of B4C particles and good interfacial integrity between matrix and B4C particles.
The hot hardness in the range of 25°C to 500°C and indentation creep data in the range of 300°C to 400°C show that hot hardness and creep resistance of Al-Mg alloy is enhanced by the presence of B4C particles. Measurement of coefficient of thermal expansion (CTE) of composites and unreinforced alloy upto 450°C showed that CTE values decrease with increase in volume fraction of reinforcement.
Compression tests at strain rates, 0.1, 10 and 100 s-1 in the temperature range 25 - 450 °C showed that the flow stress values of composites were, in general, greater than those of unreinforced alloy at all strain rates. These tests also depicted that the compressive strength increases with increase in volume fraction of reinforcements. True stress values of composites and unreinforced alloy has been found to be a strong function of temperature and strain rate. The kinetic analysis of elevated temperature plasticity of composites revealed higher stress exponent values compared to unreinforced alloy. Similarly, apparent activation energy values for hot deformation of composites were found to be higher than that of self-diffusion in Al-Mg alloy.
Tensile test data revealed that the modulus and 0.2% proof stress of composites increase with increase in volume fraction of the reinforcements. Composites containing 10%BUC showed higher ultimate tensile strength values (UTS) compared to unreinforced alloy. However, composites with 20%B4C showed lower UTS compared to that of the unreinforced alloy. This could be attributed to increased level of stress concentration and high level of plastic constraint imposed by the reinforcing jparticles or due to the presence solidification-induced defects (pores and B4C agglomerates ).
Sliding wear characteristics were evaluated at a speed of 1 m/s and at loads ranging from 0.5 to 3.5kg using a pin-on-disc set up. Results show that wear resistance of Al-5%Mg increases with the addition of B4C particles. Significant improvement in wear resistance of Al-5%Mg is achieved with the addition of 20% B4C particles. SEM examination of worn surfaces showed no pull-out of reinforcing particles even at the highest load of 3.5 kg, thus confirming good interfacial bonding between dispersed B4C particles and Al alloy matrix.
The neutron radiography data proved that (Al-5%Mg)-B4C composites possess good neutron absorbing characteristics.
From the experimental data evaluated in the "study, it may be concluded that (Al-5%Mg)-B4C composites could be a candidate material for neutron shielding and control rod application.
The enhanced elevated temperature-strength and favourable neutron absorption characteristics of these composites are strong points in favour of this material.