• Login
    View Item 
    •   etd@IISc
    • Division of Chemical Sciences
    • Materials Research Centre (MRC)
    • View Item
    •   etd@IISc
    • Division of Chemical Sciences
    • Materials Research Centre (MRC)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental And Theoretical Studies Of Strongly Correlated Multiferroic Oxides

    View/Open
    G23595.pdf (5.178Mb)
    Date
    2011-05-23
    Author
    Ghosh, Anirban
    Metadata
    Show full item record
    Abstract
    This thesis presents the synthesis and investigations of physical and chemical properties of multiferroic materials experimentally as well as theoretically. Multiferroics are materials in which at least two of the three ferroic orders, ferroelectricity, ferromagnetism and ferroelasticity occur in the same phase. Multiferroics, have the potential to be used as a four state as well as cross switchable memory devices. The thesis is organized into seven Chapters. Chapter 1 gives a brief overview of the different facets of multiferroics, explaining the origin of Multiferroicity and magnetoelectric coupling, their possible technological applications and the challenges involved. Chapter 2-4 concerns the experimental aspects and chapter 5-7 concerns the theoretical aspects. Chapter 2 deals with experimental investigations on nanoscale charge-ordered rare earth manganites. It shows with decreasing particle size the ferromagnetic interaction increases and the charge-ordering vanishes down to the lowest sizes. Chapter 3 describes magneto-dielectric, magnetic and ferroelectric properties of hexagonal LuMnO3. It also describes the Raman spectroscopy of this compound through the magnetic and ferroelectric transition temperatures. Chapter 4 deals with the anisotropic multiferroic properties in single crystals of hexagonal ErMnO3. In chapter 5 a brief introduction of density functional theory (DFT) is given. Chapter 6 deals with the magneto-structural changes, spin-phonon couplings and crystal field splittings for the different magnetic orderings LuMnO3. Chapter 7 elucidates the role of Lu d0-ness for the ferroelectricity observed of this compound.
    URI
    https://etd.iisc.ac.in/handle/2005/1216
    Collections
    • Materials Research Centre (MRC) [202]

    Related items

    Showing items related by title, author, creator and subject.

    • Phase Transitions And Magnetic Order In Multiferroic And Ferromagnetic Rare Earth Manganites 

      Harikrishnan, S (2011-03-29)
      Recent findings of multiferroicity and magnetoelectric effects in rare earth manganites have fuelled research in this class of materials. These multiferroics can be structurally divided into two classes – orthorhombic and ...
    • Studies Of Multiferroic Oxides 

      Serrao, Claudy Rayan (2013-05-31)
      This thesis presents the results of investigations of the synthesis, structure and physical properties of multiferroic materials. Multiferroics are materials in which two or all three of ferroelectricity, ferromagnetism ...
    • Electric, Magnetic and Magnetocaloric Studies of Magnetoelectric GdMnO3 and Gd0.5Sr0.5MnO3 Single Crystals 

      Wagh, Aditya A (2018-05-10)
      After the prediction of magnetoelectric effect in Cr2O3, in early 1960's, D. Asrov became the first to experimentally verify this phenomenon. After the pioneering work on magnetoelectric materials in 1960's and 1970's, the ...

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV
     

     

    Browse

    All of etd@IIScCommunities & CollectionsTitlesAuthorsAdvisorsSubjectsBy Thesis Submission DateThis CollectionTitlesAuthorsAdvisorsSubjectsBy Thesis Submission Date

    My Account

    LoginRegister

    etd@IISc is a joint service of SERC & J R D Tata Memorial (JRDTML) Library || Powered by DSpace software || DuraSpace
    Contact Us | Send Feedback | Thesis Templates
    Theme by 
    Atmire NV