Low Decoding Complexity Space-Time Block Codes For Point To Point MIMO Systems And Relay Networks
Abstract
It is well known that communication using multiple antennas provides high data rate and reliability. Coding across space and time is necessary to fully exploit the gains offered by multiple input multiple output (MIMO) systems. One such popular method of coding for MIMO systems is space-time block coding. In applications where the terminals do not have enough physical space to mount multiple antennas, relaying or cooperation between multiple single antenna terminals can help achieve spatial diversity in such scenarios as well. Relaying techniques can also help improve the range and reliability of communication. Recently it has been shown that certain space-time block codes (STBCs) can be employed in a distributed fashion in single antenna relay networks to extract the same benefits as in point to point MIMO systems. Such STBCs are called distributed STBCs. However an important practical issue with STBCs and DSTBCs is its associated high maximum likelihood (ML) decoding complexity. The central theme of this thesis is to systematically construct STBCs and DSTBCs applicable for various scenarios such that are amenable for low decoding complexity.
The first part of this thesis provides constructions of high rate STBCs from crossed product algebras that are minimum mean squared error (MMSE) optimal, i.e., achieves the least symbol error rate under MMSE reception. Moreover several previous constructions of MMSE optimal STBCs are found to be special cases of the constructions in this thesis.
It is well known that STBCs from orthogonal designs offer single symbol ML decoding along with full diversity but the rate of orthogonal designs fall exponentially with the number of transmit antennas. Thus it is evident that there exists a tradeoff between rate and ML decoding complexity of full diversity STBCs. In the second part of the thesis, a definition of rate of a STBC is proposed and the problem of optimal tradeoff between rate and ML decoding complexity is posed. An algebraic framework based on extended Clifford algebras is introduced to study the optimal tradeoff for a class of multi-symbol ML decodable STBCs called ‘Clifford unitary weight (CUW) STBCs’ which include orthogonal designs as a special case. Code constructions optimally meeting this tradeoff are also obtained using extended Clifford algebras. All CUW-STBCs achieve full diversity as well.
The third part of this thesis focusses on constructing DSTBCs with low ML decoding complexity for two hop, amplify and forward based relay networks under various scenarios. The symbol synchronous, coherent case is first considered and conditions for a DSTBC to be multi-group ML decodable are first obtained. Then three new classes of four-group ML decodable full diversity DSTBCs are systematically constructed for arbitrary number of relays. Next the symbol synchronous non-coherent case is considered and full diversity, four group decodable distributed differential STBCs (DDSTBCs) are constructed for power of two number of relays. These DDSTBCs have the best error performance compared to all previous works along with low ML decoding complexity. For the symbol asynchronous, coherent case, a transmission scheme based on orthogonal frequency division multiplexing (OFDM) is proposed to mitigate the effects of timing errors at the relay nodes and sufficient conditions for a DSTBC to be applicable in this new transmission scheme are given. Many of the existing DSTBCs including the ones in this thesis are found to satisfy these sufficient conditions. As a further extension, differential encoding is combined with the proposed transmission scheme to arrive at a new transmission scheme that can achieve full diversity in symbol asynchronous, non-coherent relay networks with no knowledge of the timing errors at the relay nodes. The DDSTBCs in this thesis are proposed for application in the proposed transmission scheme for symbol asynchronous, non-coherent relay networks. As a parallel to the non-coherent schemes based on differential encoding, we also propose non-coherent schemes for symbol synchronous and symbol asynchronous relay networks that are based on training. This training based transmission scheme leverages existing coherent DSTBCs for non-coherent communication in relay networks. Simulations show that this training scheme when used along with the coherent DSTBCs in this thesis outperform the best known DDSTBCs in the literature.
Finally, in the last part of the thesis, connections between multi-group ML decodable unitary weight (UW) STBCs and groups with real elements are established for the first time. Using this connection, we translate the necessary and sufficient conditions for multi-group ML decoding of UW-STBCs entirely in group theoretic terms. We discuss various examples of multi-group decodable UW-STBCs together with their associated groups and list the real elements involved. These examples include orthogonal designs, quasi-orthogonal designs among many others.